Integrable Equations and Their Evolutions Based on Intrinsic Geometry of Riemann Spaces

The intrinsic geometry of surfaces and Riemannian spaces will be investigated. It is shown that many nonlinear partial differential equations with physical applications and soliton solutions can be determined from the components of the relevant metric for the space. The manifolds of interest are sur...

Full description

Saved in:
Bibliographic Details
Main Author: Paul Bracken
Format: Article
Language:English
Published: Wiley 2009-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/2009/210304
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The intrinsic geometry of surfaces and Riemannian spaces will be investigated. It is shown that many nonlinear partial differential equations with physical applications and soliton solutions can be determined from the components of the relevant metric for the space. The manifolds of interest are surfaces and higher-dimensional Riemannian spaces. Methods for specifying integrable evolutions of surfaces by means of these equations will also be presented.
ISSN:0161-1712
1687-0425