Artificial intelligence can recognize metallic glasses in vast compositional space with sparse data

Abstract Glass formation is frequently observed in metallic alloys. Machine learning has been applied to discover new metallic glasses. However, the incomplete understanding of glass formation hinders descriptor selection and material property representation. Here, we use X-ray diffraction spectra,...

Full description

Saved in:
Bibliographic Details
Main Authors: Weijie Xie, Yitao Sun, Chao Wang, Mingxing Li, Fucheng Li, Yanhui Liu
Format: Article
Language:English
Published: Nature Portfolio 2025-08-01
Series:npj Computational Materials
Online Access:https://doi.org/10.1038/s41524-025-01753-9
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Glass formation is frequently observed in metallic alloys. Machine learning has been applied to discover new metallic glasses. However, the incomplete understanding of glass formation hinders descriptor selection and material property representation. Here, we use X-ray diffraction spectra, the essential tool for identifying amorphous structure, as an intermediate link. By representing spectra as images, we train generative models to produce high-fidelity spectra for all alloys in multicomponent alloy systems. Training with spectra from a tiny fraction of the total alloys is sufficient for accurate spectra generation, enabling the identification of compositional regions with a high probability of glass formation. The shift from numerical to image-based representation unlocks the potential of machine learning in the design of glass-forming alloys. Furthermore, our approach is applicable to a wide range of materials and spectroscopic techniques. We anticipate that this strategy will accelerate materials discovery across previously unexplored compositional and processing spaces.
ISSN:2057-3960