Convergence theorems for Banach space valued integrable multifunctions

In this work we generalize a result of Kato on the pointwise behavior of a weakly convergent sequence in the Lebesgue-Bochner spaces LXP(Ω) (1≤p≤∞). Then we use that result to prove Fatou's type lemmata and dominated convergence theorems for the Aumann integral of Banach space valued measurable...

Full description

Saved in:
Bibliographic Details
Main Author: Nikolaos S. Papageorgiou
Format: Article
Language:English
Published: Wiley 1987-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171287000516
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850228400643375104
author Nikolaos S. Papageorgiou
author_facet Nikolaos S. Papageorgiou
author_sort Nikolaos S. Papageorgiou
collection DOAJ
description In this work we generalize a result of Kato on the pointwise behavior of a weakly convergent sequence in the Lebesgue-Bochner spaces LXP(Ω) (1≤p≤∞). Then we use that result to prove Fatou's type lemmata and dominated convergence theorems for the Aumann integral of Banach space valued measurable multifunctions. Analogous convergence results are also proved for the sets of integrable selectors of those multifunctions. In the process of proving those convergence theorems we make some useful observations concerning the Kuratowski-Mosco convergence of sets.
format Article
id doaj-art-2b59c52303fa4ca88602b148cc327684
institution OA Journals
issn 0161-1712
1687-0425
language English
publishDate 1987-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-2b59c52303fa4ca88602b148cc3276842025-08-20T02:04:33ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251987-01-0110343344210.1155/S0161171287000516Convergence theorems for Banach space valued integrable multifunctionsNikolaos S. Papageorgiou0Department of Mathematics, University of California, Davis, California 95616, USAIn this work we generalize a result of Kato on the pointwise behavior of a weakly convergent sequence in the Lebesgue-Bochner spaces LXP(Ω) (1≤p≤∞). Then we use that result to prove Fatou's type lemmata and dominated convergence theorems for the Aumann integral of Banach space valued measurable multifunctions. Analogous convergence results are also proved for the sets of integrable selectors of those multifunctions. In the process of proving those convergence theorems we make some useful observations concerning the Kuratowski-Mosco convergence of sets.http://dx.doi.org/10.1155/S0161171287000516convergencemeasurable multifunctionsnonatomic.
spellingShingle Nikolaos S. Papageorgiou
Convergence theorems for Banach space valued integrable multifunctions
International Journal of Mathematics and Mathematical Sciences
convergence
measurable multifunctions
nonatomic.
title Convergence theorems for Banach space valued integrable multifunctions
title_full Convergence theorems for Banach space valued integrable multifunctions
title_fullStr Convergence theorems for Banach space valued integrable multifunctions
title_full_unstemmed Convergence theorems for Banach space valued integrable multifunctions
title_short Convergence theorems for Banach space valued integrable multifunctions
title_sort convergence theorems for banach space valued integrable multifunctions
topic convergence
measurable multifunctions
nonatomic.
url http://dx.doi.org/10.1155/S0161171287000516
work_keys_str_mv AT nikolaosspapageorgiou convergencetheoremsforbanachspacevaluedintegrablemultifunctions