Sulfated lactosyl archaeol (SLA) archaeosomes as a vaccine adjuvant
Archaeosomes are liposomes traditionally comprised of total polar lipids or semi-synthetic glycerolipids of ether-linked isoprenoid phytanyl cores with varied glycol- and amino-head groups. We have developed a semi-synthetic archaeosome formulation based on sulfated lactosylarchaeol (SLA) that can b...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Taylor & Francis Group
2024-12-01
|
| Series: | Human Vaccines & Immunotherapeutics |
| Subjects: | |
| Online Access: | https://www.tandfonline.com/doi/10.1080/21645515.2024.2395081 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Archaeosomes are liposomes traditionally comprised of total polar lipids or semi-synthetic glycerolipids of ether-linked isoprenoid phytanyl cores with varied glycol- and amino-head groups. We have developed a semi-synthetic archaeosome formulation based on sulfated lactosylarchaeol (SLA) that can be readily synthesized and easily formulated to induce robust humoral and cell-mediated immunity following systemic immunization, enhancing protection in models of infectious disease and cancer. Liposomes composed of SLA have been shown to be a safe and effective vaccine adjuvant to a multitude of antigens in preclinical studies including hepatitis C virus E1/E2 glycoproteins, hepatitis B surface antigen, influenza hemagglutinin, Rabbit Hemorrhagic Disease Virus antigens, and SARS-CoV-2 Spike antigens based on the ancestral strain as well as multiple variants of concern. With the COVID-19 pandemic highlighting the need for new vaccine technologies including adjuvants, this review outlines the studies conducted to date to support the development of SLA archaeosomes as a vaccine adjuvant. |
|---|---|
| ISSN: | 2164-5515 2164-554X |