A note on the exact formulas for certain $2$-color partitions
Let $p\le 23$ be a prime and $a_p(n)$ count the number of partitions of $n$ where parts that are multiple of $p$ come up with $2$ colors. Using a result of Sussman, we derive the exact formula for $a_p(n)$ and obtain an asymptotic formula for $\log a_p(n)$. Our results partially extend the work of M...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2024-11-01
|
Series: | Comptes Rendus. Mathématique |
Subjects: | |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.658/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1825206141212164096 |
---|---|
author | Guadalupe, Russelle |
author_facet | Guadalupe, Russelle |
author_sort | Guadalupe, Russelle |
collection | DOAJ |
description | Let $p\le 23$ be a prime and $a_p(n)$ count the number of partitions of $n$ where parts that are multiple of $p$ come up with $2$ colors. Using a result of Sussman, we derive the exact formula for $a_p(n)$ and obtain an asymptotic formula for $\log a_p(n)$. Our results partially extend the work of Mauth, who proved the asymptotic formula for $\log a_2(n)$ conjectured by Banerjee et al. |
format | Article |
id | doaj-art-2b49b5617c054db0a34f02d67c318e55 |
institution | Kabale University |
issn | 1778-3569 |
language | English |
publishDate | 2024-11-01 |
publisher | Académie des sciences |
record_format | Article |
series | Comptes Rendus. Mathématique |
spelling | doaj-art-2b49b5617c054db0a34f02d67c318e552025-02-07T11:23:50ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-11-01362G111485149010.5802/crmath.65810.5802/crmath.658A note on the exact formulas for certain $2$-color partitionsGuadalupe, Russelle0https://orcid.org/0009-0001-8974-4502Institute of Mathematics, University of the Philippines-Diliman, Quezon City, 1101, PhilippinesLet $p\le 23$ be a prime and $a_p(n)$ count the number of partitions of $n$ where parts that are multiple of $p$ come up with $2$ colors. Using a result of Sussman, we derive the exact formula for $a_p(n)$ and obtain an asymptotic formula for $\log a_p(n)$. Our results partially extend the work of Mauth, who proved the asymptotic formula for $\log a_2(n)$ conjectured by Banerjee et al.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.658/Circle method$\eta $-quotientspartitionsasymptotic formula |
spellingShingle | Guadalupe, Russelle A note on the exact formulas for certain $2$-color partitions Comptes Rendus. Mathématique Circle method $\eta $-quotients partitions asymptotic formula |
title | A note on the exact formulas for certain $2$-color partitions |
title_full | A note on the exact formulas for certain $2$-color partitions |
title_fullStr | A note on the exact formulas for certain $2$-color partitions |
title_full_unstemmed | A note on the exact formulas for certain $2$-color partitions |
title_short | A note on the exact formulas for certain $2$-color partitions |
title_sort | note on the exact formulas for certain 2 color partitions |
topic | Circle method $\eta $-quotients partitions asymptotic formula |
url | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.658/ |
work_keys_str_mv | AT guadaluperusselle anoteontheexactformulasforcertain2colorpartitions AT guadaluperusselle noteontheexactformulasforcertain2colorpartitions |