Structured Bayesian Super-Resolution Forward-Looking Imaging for Maneuvering Platforms Based on Enhanced Sparsity Model

Sparse reconstruction-based imaging techniques can be utilized to solve forward-looking imaging problems with limited azimuth resolution. However, these methods perform well only under the traditional model for the platform with low speed, and the performance deteriorates for the maneuvering traject...

Full description

Saved in:
Bibliographic Details
Main Authors: Yiheng Guo, Yujie Liang, Yi Liang, Xiangwei Sun
Format: Article
Language:English
Published: MDPI AG 2025-02-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/17/5/775
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Sparse reconstruction-based imaging techniques can be utilized to solve forward-looking imaging problems with limited azimuth resolution. However, these methods perform well only under the traditional model for the platform with low speed, and the performance deteriorates for the maneuvering trajectory. In this paper, a structured Bayesian super-resolution forward-looking imaging algorithm for maneuvering platforms under an enhanced sparsity model is proposed. An enhanced sparsity model for maneuvering platforms is established to address the reconstruction problem, and a hierarchical Student-t (ST) prior is designed to model the distribution characteristics of the sparse imaging scene. To further leverage prior information about structural characteristics of the scatterings, coupled patterns among neighboring pixels are incorporated to construct a structured sparse prior. Finally, forward-looking imaging parameters are estimated using the expectation/maximization-based variational Bayesian inference. Numerical simulations validate the effectiveness of the proposed algorithm and the superiority over conventional methods based on pixel sparse assumptions in forward-looking scenes for maneuvering platforms.
ISSN:2072-4292