Evaluating the Balancing Properties of Wind and Solar Photovoltaic System Production
This research evaluates how wind and solar PV systems balance together. Increasing the share of stochastic renewable energy production in electricity and hot turning reserve deficit are welcome compensation issues. This research used weather station data from an open seashore from the last 10 years,...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-04-01
|
| Series: | Energies |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1996-1073/18/7/1871 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This research evaluates how wind and solar PV systems balance together. Increasing the share of stochastic renewable energy production in electricity and hot turning reserve deficit are welcome compensation issues. This research used weather station data from an open seashore from the last 10 years, 2014–2023, on the Estonian island Saaremaa’s west coast to evaluate yearly fluctuations. We used the indicator demand cover factor to estimate the coincidence of wind generation and solar PV system electricity. For clarity, the initial data were prepared by assuming the equality of production and consumption annual data by scaling the obtained data. This study demonstrates that the best compensating possibilities are the share of wind generation and solar PV electricity mix, respectively, equal to 0.7/0.3 and 0.8/0.2, reaching a demand cover factor of 0.62. This study evaluated the demand cover factor’s dependence on increased production compared to consumption. This study used different batteries to research the influence of these demand cover factors. Furthermore, this research makes a significant contribution by showcasing how to turn weather station data into real wind generator and PV panel production data. |
|---|---|
| ISSN: | 1996-1073 |