High‐Energy‐Density Li‐Ion Batteries Employing Gradient Porosity LiFePO4 Electrode for Enhancing Li‐Ion Kinetics and Electron Transfer

Lithium iron phosphate (LFP) cathodes are promising materials for energy storage device applications due to their thermal stability, chemical robustness, cost‐effectiveness, and long lifespan. However, their low electronic and ionic conductivity, as well as challenges in achieving high packing densi...

Full description

Saved in:
Bibliographic Details
Main Authors: Seungmin Han, Hyungjun Lee, Subi Yang, Jaeik Kim, Jinwoo Jeong, Yeseung Lee, Jinyoung Chun, Kwang Chul Roh, Patrick Joohyun Kim, Dongsoo Lee, Seho Sun, Woojin Jeong, Bogeum Choi, Ungyu Paik, Taeseup Song, Junghyun Choi
Format: Article
Language:English
Published: Wiley-VCH 2025-07-01
Series:Small Structures
Subjects:
Online Access:https://doi.org/10.1002/sstr.202500093
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849428580393549824
author Seungmin Han
Hyungjun Lee
Subi Yang
Jaeik Kim
Jinwoo Jeong
Yeseung Lee
Jinyoung Chun
Kwang Chul Roh
Patrick Joohyun Kim
Dongsoo Lee
Seho Sun
Woojin Jeong
Bogeum Choi
Ungyu Paik
Taeseup Song
Junghyun Choi
author_facet Seungmin Han
Hyungjun Lee
Subi Yang
Jaeik Kim
Jinwoo Jeong
Yeseung Lee
Jinyoung Chun
Kwang Chul Roh
Patrick Joohyun Kim
Dongsoo Lee
Seho Sun
Woojin Jeong
Bogeum Choi
Ungyu Paik
Taeseup Song
Junghyun Choi
author_sort Seungmin Han
collection DOAJ
description Lithium iron phosphate (LFP) cathodes are promising materials for energy storage device applications due to their thermal stability, chemical robustness, cost‐effectiveness, and long lifespan. However, their low electronic and ionic conductivity, as well as challenges in achieving high packing density in thick electrodes, limit their practical implementation. In this study, a gradient porosity LFP electrode with a high areal capacity of 6.3 mAh cm−2 and an electrode density of 2.5 g cc−1 is proposed. In electrodes with gradient porosity, binder migration is mitigated, ensuring a uniform binder distribution that enhances Li‐ion kinetics and adhesion strength between the electrode and aluminum current collector. Furthermore, by employing a particle with short charge carrier pathways in the bottom layer and a particle with a high tap density in the top layer, facile Li‐ion and electron transfer and easier electrode processing can be achieved. The resulting gradient porosity electrode with a high areal capacity of 6.3 mAh cm−2 exhibits excellent cycle stability over 100 cycles in full‐cell operation. These findings provide valuable insight into scalable strategies for high‐energy‐density, cost‐effective LFP‐based Li‐ion batteries.
format Article
id doaj-art-2b17bbce98694a988e0b054b66cbb813
institution Kabale University
issn 2688-4062
language English
publishDate 2025-07-01
publisher Wiley-VCH
record_format Article
series Small Structures
spelling doaj-art-2b17bbce98694a988e0b054b66cbb8132025-08-20T03:28:40ZengWiley-VCHSmall Structures2688-40622025-07-0167n/an/a10.1002/sstr.202500093High‐Energy‐Density Li‐Ion Batteries Employing Gradient Porosity LiFePO4 Electrode for Enhancing Li‐Ion Kinetics and Electron TransferSeungmin Han0Hyungjun Lee1Subi Yang2Jaeik Kim3Jinwoo Jeong4Yeseung Lee5Jinyoung Chun6Kwang Chul Roh7Patrick Joohyun Kim8Dongsoo Lee9Seho Sun10Woojin Jeong11Bogeum Choi12Ungyu Paik13Taeseup Song14Junghyun Choi15Department of Energy Engineering Hanyang University 222 Wangsimni‐ro Seoul 04763 Republic of KoreaDepartment of Energy Engineering Hanyang University 222 Wangsimni‐ro Seoul 04763 Republic of KoreaEmerging Materials R&D Division Korea Institute of Ceramic Engineering and Technology Jinju 52851 Republic of KoreaDepartment of Energy Engineering Hanyang University 222 Wangsimni‐ro Seoul 04763 Republic of KoreaDepartment of Battery Engineering Hanyang University 222 Wangsimni‐ro Seoul 04763 Republic of KoreaDepartment of Battery Engineering Hanyang University 222 Wangsimni‐ro Seoul 04763 Republic of KoreaEmerging Materials R&D Division Korea Institute of Ceramic Engineering and Technology Jinju 52851 Republic of KoreaEmerging Materials R&D Division Korea Institute of Ceramic Engineering and Technology Jinju 52851 Republic of KoreaDepartment of Applied Chemistry Kyungpook National University Daegu 41566 Republic of KoreaSchool of Chemical Biological and Battery Engineering Gachon University Seongnam‐si, Gyeonggi‐do 13120 Republic of KoreaSchool of Chemical Engineering Yeungnam University Gyeongsan 38541 Republic of KoreaDepartment of Energy Engineering Hanyang University 222 Wangsimni‐ro Seoul 04763 Republic of KoreaDepartment of Battery Engineering Hanyang University 222 Wangsimni‐ro Seoul 04763 Republic of KoreaDepartment of Energy Engineering Hanyang University 222 Wangsimni‐ro Seoul 04763 Republic of KoreaDepartment of Energy Engineering Hanyang University 222 Wangsimni‐ro Seoul 04763 Republic of KoreaSchool of Chemical Biological and Battery Engineering Gachon University Seongnam‐si, Gyeonggi‐do 13120 Republic of KoreaLithium iron phosphate (LFP) cathodes are promising materials for energy storage device applications due to their thermal stability, chemical robustness, cost‐effectiveness, and long lifespan. However, their low electronic and ionic conductivity, as well as challenges in achieving high packing density in thick electrodes, limit their practical implementation. In this study, a gradient porosity LFP electrode with a high areal capacity of 6.3 mAh cm−2 and an electrode density of 2.5 g cc−1 is proposed. In electrodes with gradient porosity, binder migration is mitigated, ensuring a uniform binder distribution that enhances Li‐ion kinetics and adhesion strength between the electrode and aluminum current collector. Furthermore, by employing a particle with short charge carrier pathways in the bottom layer and a particle with a high tap density in the top layer, facile Li‐ion and electron transfer and easier electrode processing can be achieved. The resulting gradient porosity electrode with a high areal capacity of 6.3 mAh cm−2 exhibits excellent cycle stability over 100 cycles in full‐cell operation. These findings provide valuable insight into scalable strategies for high‐energy‐density, cost‐effective LFP‐based Li‐ion batteries.https://doi.org/10.1002/sstr.202500093gradient porosityLi‐ion batterieslithium iron phosphatemicrostructure engineeringthick film electrode
spellingShingle Seungmin Han
Hyungjun Lee
Subi Yang
Jaeik Kim
Jinwoo Jeong
Yeseung Lee
Jinyoung Chun
Kwang Chul Roh
Patrick Joohyun Kim
Dongsoo Lee
Seho Sun
Woojin Jeong
Bogeum Choi
Ungyu Paik
Taeseup Song
Junghyun Choi
High‐Energy‐Density Li‐Ion Batteries Employing Gradient Porosity LiFePO4 Electrode for Enhancing Li‐Ion Kinetics and Electron Transfer
Small Structures
gradient porosity
Li‐ion batteries
lithium iron phosphate
microstructure engineering
thick film electrode
title High‐Energy‐Density Li‐Ion Batteries Employing Gradient Porosity LiFePO4 Electrode for Enhancing Li‐Ion Kinetics and Electron Transfer
title_full High‐Energy‐Density Li‐Ion Batteries Employing Gradient Porosity LiFePO4 Electrode for Enhancing Li‐Ion Kinetics and Electron Transfer
title_fullStr High‐Energy‐Density Li‐Ion Batteries Employing Gradient Porosity LiFePO4 Electrode for Enhancing Li‐Ion Kinetics and Electron Transfer
title_full_unstemmed High‐Energy‐Density Li‐Ion Batteries Employing Gradient Porosity LiFePO4 Electrode for Enhancing Li‐Ion Kinetics and Electron Transfer
title_short High‐Energy‐Density Li‐Ion Batteries Employing Gradient Porosity LiFePO4 Electrode for Enhancing Li‐Ion Kinetics and Electron Transfer
title_sort high energy density li ion batteries employing gradient porosity lifepo4 electrode for enhancing li ion kinetics and electron transfer
topic gradient porosity
Li‐ion batteries
lithium iron phosphate
microstructure engineering
thick film electrode
url https://doi.org/10.1002/sstr.202500093
work_keys_str_mv AT seungminhan highenergydensityliionbatteriesemployinggradientporositylifepo4electrodeforenhancingliionkineticsandelectrontransfer
AT hyungjunlee highenergydensityliionbatteriesemployinggradientporositylifepo4electrodeforenhancingliionkineticsandelectrontransfer
AT subiyang highenergydensityliionbatteriesemployinggradientporositylifepo4electrodeforenhancingliionkineticsandelectrontransfer
AT jaeikkim highenergydensityliionbatteriesemployinggradientporositylifepo4electrodeforenhancingliionkineticsandelectrontransfer
AT jinwoojeong highenergydensityliionbatteriesemployinggradientporositylifepo4electrodeforenhancingliionkineticsandelectrontransfer
AT yeseunglee highenergydensityliionbatteriesemployinggradientporositylifepo4electrodeforenhancingliionkineticsandelectrontransfer
AT jinyoungchun highenergydensityliionbatteriesemployinggradientporositylifepo4electrodeforenhancingliionkineticsandelectrontransfer
AT kwangchulroh highenergydensityliionbatteriesemployinggradientporositylifepo4electrodeforenhancingliionkineticsandelectrontransfer
AT patrickjoohyunkim highenergydensityliionbatteriesemployinggradientporositylifepo4electrodeforenhancingliionkineticsandelectrontransfer
AT dongsoolee highenergydensityliionbatteriesemployinggradientporositylifepo4electrodeforenhancingliionkineticsandelectrontransfer
AT sehosun highenergydensityliionbatteriesemployinggradientporositylifepo4electrodeforenhancingliionkineticsandelectrontransfer
AT woojinjeong highenergydensityliionbatteriesemployinggradientporositylifepo4electrodeforenhancingliionkineticsandelectrontransfer
AT bogeumchoi highenergydensityliionbatteriesemployinggradientporositylifepo4electrodeforenhancingliionkineticsandelectrontransfer
AT ungyupaik highenergydensityliionbatteriesemployinggradientporositylifepo4electrodeforenhancingliionkineticsandelectrontransfer
AT taeseupsong highenergydensityliionbatteriesemployinggradientporositylifepo4electrodeforenhancingliionkineticsandelectrontransfer
AT junghyunchoi highenergydensityliionbatteriesemployinggradientporositylifepo4electrodeforenhancingliionkineticsandelectrontransfer