High‐Energy‐Density Li‐Ion Batteries Employing Gradient Porosity LiFePO4 Electrode for Enhancing Li‐Ion Kinetics and Electron Transfer
Lithium iron phosphate (LFP) cathodes are promising materials for energy storage device applications due to their thermal stability, chemical robustness, cost‐effectiveness, and long lifespan. However, their low electronic and ionic conductivity, as well as challenges in achieving high packing densi...
Saved in:
| Main Authors: | , , , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley-VCH
2025-07-01
|
| Series: | Small Structures |
| Subjects: | |
| Online Access: | https://doi.org/10.1002/sstr.202500093 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849428580393549824 |
|---|---|
| author | Seungmin Han Hyungjun Lee Subi Yang Jaeik Kim Jinwoo Jeong Yeseung Lee Jinyoung Chun Kwang Chul Roh Patrick Joohyun Kim Dongsoo Lee Seho Sun Woojin Jeong Bogeum Choi Ungyu Paik Taeseup Song Junghyun Choi |
| author_facet | Seungmin Han Hyungjun Lee Subi Yang Jaeik Kim Jinwoo Jeong Yeseung Lee Jinyoung Chun Kwang Chul Roh Patrick Joohyun Kim Dongsoo Lee Seho Sun Woojin Jeong Bogeum Choi Ungyu Paik Taeseup Song Junghyun Choi |
| author_sort | Seungmin Han |
| collection | DOAJ |
| description | Lithium iron phosphate (LFP) cathodes are promising materials for energy storage device applications due to their thermal stability, chemical robustness, cost‐effectiveness, and long lifespan. However, their low electronic and ionic conductivity, as well as challenges in achieving high packing density in thick electrodes, limit their practical implementation. In this study, a gradient porosity LFP electrode with a high areal capacity of 6.3 mAh cm−2 and an electrode density of 2.5 g cc−1 is proposed. In electrodes with gradient porosity, binder migration is mitigated, ensuring a uniform binder distribution that enhances Li‐ion kinetics and adhesion strength between the electrode and aluminum current collector. Furthermore, by employing a particle with short charge carrier pathways in the bottom layer and a particle with a high tap density in the top layer, facile Li‐ion and electron transfer and easier electrode processing can be achieved. The resulting gradient porosity electrode with a high areal capacity of 6.3 mAh cm−2 exhibits excellent cycle stability over 100 cycles in full‐cell operation. These findings provide valuable insight into scalable strategies for high‐energy‐density, cost‐effective LFP‐based Li‐ion batteries. |
| format | Article |
| id | doaj-art-2b17bbce98694a988e0b054b66cbb813 |
| institution | Kabale University |
| issn | 2688-4062 |
| language | English |
| publishDate | 2025-07-01 |
| publisher | Wiley-VCH |
| record_format | Article |
| series | Small Structures |
| spelling | doaj-art-2b17bbce98694a988e0b054b66cbb8132025-08-20T03:28:40ZengWiley-VCHSmall Structures2688-40622025-07-0167n/an/a10.1002/sstr.202500093High‐Energy‐Density Li‐Ion Batteries Employing Gradient Porosity LiFePO4 Electrode for Enhancing Li‐Ion Kinetics and Electron TransferSeungmin Han0Hyungjun Lee1Subi Yang2Jaeik Kim3Jinwoo Jeong4Yeseung Lee5Jinyoung Chun6Kwang Chul Roh7Patrick Joohyun Kim8Dongsoo Lee9Seho Sun10Woojin Jeong11Bogeum Choi12Ungyu Paik13Taeseup Song14Junghyun Choi15Department of Energy Engineering Hanyang University 222 Wangsimni‐ro Seoul 04763 Republic of KoreaDepartment of Energy Engineering Hanyang University 222 Wangsimni‐ro Seoul 04763 Republic of KoreaEmerging Materials R&D Division Korea Institute of Ceramic Engineering and Technology Jinju 52851 Republic of KoreaDepartment of Energy Engineering Hanyang University 222 Wangsimni‐ro Seoul 04763 Republic of KoreaDepartment of Battery Engineering Hanyang University 222 Wangsimni‐ro Seoul 04763 Republic of KoreaDepartment of Battery Engineering Hanyang University 222 Wangsimni‐ro Seoul 04763 Republic of KoreaEmerging Materials R&D Division Korea Institute of Ceramic Engineering and Technology Jinju 52851 Republic of KoreaEmerging Materials R&D Division Korea Institute of Ceramic Engineering and Technology Jinju 52851 Republic of KoreaDepartment of Applied Chemistry Kyungpook National University Daegu 41566 Republic of KoreaSchool of Chemical Biological and Battery Engineering Gachon University Seongnam‐si, Gyeonggi‐do 13120 Republic of KoreaSchool of Chemical Engineering Yeungnam University Gyeongsan 38541 Republic of KoreaDepartment of Energy Engineering Hanyang University 222 Wangsimni‐ro Seoul 04763 Republic of KoreaDepartment of Battery Engineering Hanyang University 222 Wangsimni‐ro Seoul 04763 Republic of KoreaDepartment of Energy Engineering Hanyang University 222 Wangsimni‐ro Seoul 04763 Republic of KoreaDepartment of Energy Engineering Hanyang University 222 Wangsimni‐ro Seoul 04763 Republic of KoreaSchool of Chemical Biological and Battery Engineering Gachon University Seongnam‐si, Gyeonggi‐do 13120 Republic of KoreaLithium iron phosphate (LFP) cathodes are promising materials for energy storage device applications due to their thermal stability, chemical robustness, cost‐effectiveness, and long lifespan. However, their low electronic and ionic conductivity, as well as challenges in achieving high packing density in thick electrodes, limit their practical implementation. In this study, a gradient porosity LFP electrode with a high areal capacity of 6.3 mAh cm−2 and an electrode density of 2.5 g cc−1 is proposed. In electrodes with gradient porosity, binder migration is mitigated, ensuring a uniform binder distribution that enhances Li‐ion kinetics and adhesion strength between the electrode and aluminum current collector. Furthermore, by employing a particle with short charge carrier pathways in the bottom layer and a particle with a high tap density in the top layer, facile Li‐ion and electron transfer and easier electrode processing can be achieved. The resulting gradient porosity electrode with a high areal capacity of 6.3 mAh cm−2 exhibits excellent cycle stability over 100 cycles in full‐cell operation. These findings provide valuable insight into scalable strategies for high‐energy‐density, cost‐effective LFP‐based Li‐ion batteries.https://doi.org/10.1002/sstr.202500093gradient porosityLi‐ion batterieslithium iron phosphatemicrostructure engineeringthick film electrode |
| spellingShingle | Seungmin Han Hyungjun Lee Subi Yang Jaeik Kim Jinwoo Jeong Yeseung Lee Jinyoung Chun Kwang Chul Roh Patrick Joohyun Kim Dongsoo Lee Seho Sun Woojin Jeong Bogeum Choi Ungyu Paik Taeseup Song Junghyun Choi High‐Energy‐Density Li‐Ion Batteries Employing Gradient Porosity LiFePO4 Electrode for Enhancing Li‐Ion Kinetics and Electron Transfer Small Structures gradient porosity Li‐ion batteries lithium iron phosphate microstructure engineering thick film electrode |
| title | High‐Energy‐Density Li‐Ion Batteries Employing Gradient Porosity LiFePO4 Electrode for Enhancing Li‐Ion Kinetics and Electron Transfer |
| title_full | High‐Energy‐Density Li‐Ion Batteries Employing Gradient Porosity LiFePO4 Electrode for Enhancing Li‐Ion Kinetics and Electron Transfer |
| title_fullStr | High‐Energy‐Density Li‐Ion Batteries Employing Gradient Porosity LiFePO4 Electrode for Enhancing Li‐Ion Kinetics and Electron Transfer |
| title_full_unstemmed | High‐Energy‐Density Li‐Ion Batteries Employing Gradient Porosity LiFePO4 Electrode for Enhancing Li‐Ion Kinetics and Electron Transfer |
| title_short | High‐Energy‐Density Li‐Ion Batteries Employing Gradient Porosity LiFePO4 Electrode for Enhancing Li‐Ion Kinetics and Electron Transfer |
| title_sort | high energy density li ion batteries employing gradient porosity lifepo4 electrode for enhancing li ion kinetics and electron transfer |
| topic | gradient porosity Li‐ion batteries lithium iron phosphate microstructure engineering thick film electrode |
| url | https://doi.org/10.1002/sstr.202500093 |
| work_keys_str_mv | AT seungminhan highenergydensityliionbatteriesemployinggradientporositylifepo4electrodeforenhancingliionkineticsandelectrontransfer AT hyungjunlee highenergydensityliionbatteriesemployinggradientporositylifepo4electrodeforenhancingliionkineticsandelectrontransfer AT subiyang highenergydensityliionbatteriesemployinggradientporositylifepo4electrodeforenhancingliionkineticsandelectrontransfer AT jaeikkim highenergydensityliionbatteriesemployinggradientporositylifepo4electrodeforenhancingliionkineticsandelectrontransfer AT jinwoojeong highenergydensityliionbatteriesemployinggradientporositylifepo4electrodeforenhancingliionkineticsandelectrontransfer AT yeseunglee highenergydensityliionbatteriesemployinggradientporositylifepo4electrodeforenhancingliionkineticsandelectrontransfer AT jinyoungchun highenergydensityliionbatteriesemployinggradientporositylifepo4electrodeforenhancingliionkineticsandelectrontransfer AT kwangchulroh highenergydensityliionbatteriesemployinggradientporositylifepo4electrodeforenhancingliionkineticsandelectrontransfer AT patrickjoohyunkim highenergydensityliionbatteriesemployinggradientporositylifepo4electrodeforenhancingliionkineticsandelectrontransfer AT dongsoolee highenergydensityliionbatteriesemployinggradientporositylifepo4electrodeforenhancingliionkineticsandelectrontransfer AT sehosun highenergydensityliionbatteriesemployinggradientporositylifepo4electrodeforenhancingliionkineticsandelectrontransfer AT woojinjeong highenergydensityliionbatteriesemployinggradientporositylifepo4electrodeforenhancingliionkineticsandelectrontransfer AT bogeumchoi highenergydensityliionbatteriesemployinggradientporositylifepo4electrodeforenhancingliionkineticsandelectrontransfer AT ungyupaik highenergydensityliionbatteriesemployinggradientporositylifepo4electrodeforenhancingliionkineticsandelectrontransfer AT taeseupsong highenergydensityliionbatteriesemployinggradientporositylifepo4electrodeforenhancingliionkineticsandelectrontransfer AT junghyunchoi highenergydensityliionbatteriesemployinggradientporositylifepo4electrodeforenhancingliionkineticsandelectrontransfer |