Idempotent and compact matrices on linear lattices: a survey of some lattice results and related solutions of finite relational equations

After a survey of some known lattice results, we determine the greatest idempotent (resp. compact) solution, when it exists, of a finite square rational equation assigned over a linear lattice. Similar considerations are presented for composite relational equations.

Saved in:
Bibliographic Details
Main Authors: Fortunata Liguori, Giulia Martini, Salvatore Sessa
Format: Article
Language:English
Published: Wiley 1993-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171293000365
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850229522348113920
author Fortunata Liguori
Giulia Martini
Salvatore Sessa
author_facet Fortunata Liguori
Giulia Martini
Salvatore Sessa
author_sort Fortunata Liguori
collection DOAJ
description After a survey of some known lattice results, we determine the greatest idempotent (resp. compact) solution, when it exists, of a finite square rational equation assigned over a linear lattice. Similar considerations are presented for composite relational equations.
format Article
id doaj-art-2af48db9722e47d1a31f50ebb8ba7541
institution OA Journals
issn 0161-1712
1687-0425
language English
publishDate 1993-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-2af48db9722e47d1a31f50ebb8ba75412025-08-20T02:04:11ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251993-01-0116230130910.1155/S0161171293000365Idempotent and compact matrices on linear lattices: a survey of some lattice results and related solutions of finite relational equationsFortunata Liguori0Giulia Martini1Salvatore Sessa2Università di Napoli, Facoltà di Architettura, Istituto Matematico, Via Monteoliveto 3, Napoli 80134, ItalyUniversità di Napoli, Facoltà di Architettura, Istituto Matematico, Via Monteoliveto 3, Napoli 80134, ItalyUniversità di Napoli, Facoltà di Architettura, Istituto Matematico, Via Monteoliveto 3, Napoli 80134, ItalyAfter a survey of some known lattice results, we determine the greatest idempotent (resp. compact) solution, when it exists, of a finite square rational equation assigned over a linear lattice. Similar considerations are presented for composite relational equations.http://dx.doi.org/10.1155/S0161171293000365compact matrixidempotent matrixtransitive matrixsquare finite relation equationresiduated lattice.
spellingShingle Fortunata Liguori
Giulia Martini
Salvatore Sessa
Idempotent and compact matrices on linear lattices: a survey of some lattice results and related solutions of finite relational equations
International Journal of Mathematics and Mathematical Sciences
compact matrix
idempotent matrix
transitive matrix
square finite relation equation
residuated lattice.
title Idempotent and compact matrices on linear lattices: a survey of some lattice results and related solutions of finite relational equations
title_full Idempotent and compact matrices on linear lattices: a survey of some lattice results and related solutions of finite relational equations
title_fullStr Idempotent and compact matrices on linear lattices: a survey of some lattice results and related solutions of finite relational equations
title_full_unstemmed Idempotent and compact matrices on linear lattices: a survey of some lattice results and related solutions of finite relational equations
title_short Idempotent and compact matrices on linear lattices: a survey of some lattice results and related solutions of finite relational equations
title_sort idempotent and compact matrices on linear lattices a survey of some lattice results and related solutions of finite relational equations
topic compact matrix
idempotent matrix
transitive matrix
square finite relation equation
residuated lattice.
url http://dx.doi.org/10.1155/S0161171293000365
work_keys_str_mv AT fortunataliguori idempotentandcompactmatricesonlinearlatticesasurveyofsomelatticeresultsandrelatedsolutionsoffiniterelationalequations
AT giuliamartini idempotentandcompactmatricesonlinearlatticesasurveyofsomelatticeresultsandrelatedsolutionsoffiniterelationalequations
AT salvatoresessa idempotentandcompactmatricesonlinearlatticesasurveyofsomelatticeresultsandrelatedsolutionsoffiniterelationalequations