On the relative growth of Dirichlet series with zero abscissa of absolute convergence

Let $F$ and $G$ be analytic functions given by Dirichlet series with exponents increasing to $+\infty$ and zero abscissa of absolute convergence. The growth of $F$ with respect to $G$ is studied through the generalized order $$\varrho^0_{\alpha,\beta}[F]_G=\varlimsup\limits_{\sigma\uparrow 0}\dfrac{...

Full description

Saved in:
Bibliographic Details
Main Author: O. M. Mulyava
Format: Article
Language:deu
Published: Ivan Franko National University of Lviv 2021-03-01
Series:Математичні Студії
Subjects:
Online Access:http://matstud.org.ua/ojs/index.php/matstud/article/view/193
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850094903071080448
author O. M. Mulyava
author_facet O. M. Mulyava
author_sort O. M. Mulyava
collection DOAJ
description Let $F$ and $G$ be analytic functions given by Dirichlet series with exponents increasing to $+\infty$ and zero abscissa of absolute convergence. The growth of $F$ with respect to $G$ is studied through the generalized order $$\varrho^0_{\alpha,\beta}[F]_G=\varlimsup\limits_{\sigma\uparrow 0}\dfrac{\alpha(1/|M^{-1}_G(M_F(\sigma)|)}{\beta(1/|\sigma|)}$$ and the generalized lower order $$\lambda^0_{\alpha,\beta}[F]_G=\varliminf\limits_{\sigma\uparrow 0} \dfrac{\alpha(1/|M^{-1}_G(M_F(\sigma)|)}{\beta(1/|\sigma|)},$$ where $M_F(\sigma)=\sup\{|F(\sigma+it)|:\,t\in{\mathbb R}\},$ $M^{-1}_G(x)$ is the function inverse to $M_G(\sigma)$ and $\alpha$ and $\beta$ are positive increasing to $+\infty$ functions. Formulas are found for the finding these quantities.
format Article
id doaj-art-2ac0507626f04bcaa4fcc29baef9cfa6
institution DOAJ
issn 1027-4634
2411-0620
language deu
publishDate 2021-03-01
publisher Ivan Franko National University of Lviv
record_format Article
series Математичні Студії
spelling doaj-art-2ac0507626f04bcaa4fcc29baef9cfa62025-08-20T02:41:33ZdeuIvan Franko National University of LvivМатематичні Студії1027-46342411-06202021-03-01551445010.30970/ms.55.1.44-50193On the relative growth of Dirichlet series with zero abscissa of absolute convergenceO. M. Mulyava0Kyiv National University of Food Technologies, Kyiv, UkraineLet $F$ and $G$ be analytic functions given by Dirichlet series with exponents increasing to $+\infty$ and zero abscissa of absolute convergence. The growth of $F$ with respect to $G$ is studied through the generalized order $$\varrho^0_{\alpha,\beta}[F]_G=\varlimsup\limits_{\sigma\uparrow 0}\dfrac{\alpha(1/|M^{-1}_G(M_F(\sigma)|)}{\beta(1/|\sigma|)}$$ and the generalized lower order $$\lambda^0_{\alpha,\beta}[F]_G=\varliminf\limits_{\sigma\uparrow 0} \dfrac{\alpha(1/|M^{-1}_G(M_F(\sigma)|)}{\beta(1/|\sigma|)},$$ where $M_F(\sigma)=\sup\{|F(\sigma+it)|:\,t\in{\mathbb R}\},$ $M^{-1}_G(x)$ is the function inverse to $M_G(\sigma)$ and $\alpha$ and $\beta$ are positive increasing to $+\infty$ functions. Formulas are found for the finding these quantities.http://matstud.org.ua/ojs/index.php/matstud/article/view/193dirichlet series, relative growth, generalized order.
spellingShingle O. M. Mulyava
On the relative growth of Dirichlet series with zero abscissa of absolute convergence
Математичні Студії
dirichlet series, relative growth, generalized order.
title On the relative growth of Dirichlet series with zero abscissa of absolute convergence
title_full On the relative growth of Dirichlet series with zero abscissa of absolute convergence
title_fullStr On the relative growth of Dirichlet series with zero abscissa of absolute convergence
title_full_unstemmed On the relative growth of Dirichlet series with zero abscissa of absolute convergence
title_short On the relative growth of Dirichlet series with zero abscissa of absolute convergence
title_sort on the relative growth of dirichlet series with zero abscissa of absolute convergence
topic dirichlet series, relative growth, generalized order.
url http://matstud.org.ua/ojs/index.php/matstud/article/view/193
work_keys_str_mv AT ommulyava ontherelativegrowthofdirichletserieswithzeroabscissaofabsoluteconvergence