On Penalty and Gap Function Methods for Bilevel Equilibrium Problems

We consider bilevel pseudomonotone equilibrium problems. We use a penalty function to convert a bilevel problem into one-level ones. We generalize a pseudo-∇-monotonicity concept from ∇-monotonicity and prove that under pseudo-∇-monotonicity property any stationary point of a regularized gap functio...

Full description

Saved in:
Bibliographic Details
Main Authors: Bui Van Dinh, Le Dung Muu
Format: Article
Language:English
Published: Wiley 2011-01-01
Series:Journal of Applied Mathematics
Online Access:http://dx.doi.org/10.1155/2011/646452
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850229640099004416
author Bui Van Dinh
Le Dung Muu
author_facet Bui Van Dinh
Le Dung Muu
author_sort Bui Van Dinh
collection DOAJ
description We consider bilevel pseudomonotone equilibrium problems. We use a penalty function to convert a bilevel problem into one-level ones. We generalize a pseudo-∇-monotonicity concept from ∇-monotonicity and prove that under pseudo-∇-monotonicity property any stationary point of a regularized gap function is a solution of the penalized equilibrium problem. As an application, we discuss a special case that arises from the Tikhonov regularization method for pseudomonotone equilibrium problems.
format Article
id doaj-art-2aa575cf4b924cbd89bb55164ba3724a
institution OA Journals
issn 1110-757X
1687-0042
language English
publishDate 2011-01-01
publisher Wiley
record_format Article
series Journal of Applied Mathematics
spelling doaj-art-2aa575cf4b924cbd89bb55164ba3724a2025-08-20T02:04:09ZengWileyJournal of Applied Mathematics1110-757X1687-00422011-01-01201110.1155/2011/646452646452On Penalty and Gap Function Methods for Bilevel Equilibrium ProblemsBui Van Dinh0Le Dung Muu1Faculty of Information Technology, Le Quy Don University, Hanoi, VietnamControl and Optimization Department, Institute of Mathematics, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10307, VietnamWe consider bilevel pseudomonotone equilibrium problems. We use a penalty function to convert a bilevel problem into one-level ones. We generalize a pseudo-∇-monotonicity concept from ∇-monotonicity and prove that under pseudo-∇-monotonicity property any stationary point of a regularized gap function is a solution of the penalized equilibrium problem. As an application, we discuss a special case that arises from the Tikhonov regularization method for pseudomonotone equilibrium problems.http://dx.doi.org/10.1155/2011/646452
spellingShingle Bui Van Dinh
Le Dung Muu
On Penalty and Gap Function Methods for Bilevel Equilibrium Problems
Journal of Applied Mathematics
title On Penalty and Gap Function Methods for Bilevel Equilibrium Problems
title_full On Penalty and Gap Function Methods for Bilevel Equilibrium Problems
title_fullStr On Penalty and Gap Function Methods for Bilevel Equilibrium Problems
title_full_unstemmed On Penalty and Gap Function Methods for Bilevel Equilibrium Problems
title_short On Penalty and Gap Function Methods for Bilevel Equilibrium Problems
title_sort on penalty and gap function methods for bilevel equilibrium problems
url http://dx.doi.org/10.1155/2011/646452
work_keys_str_mv AT buivandinh onpenaltyandgapfunctionmethodsforbilevelequilibriumproblems
AT ledungmuu onpenaltyandgapfunctionmethodsforbilevelequilibriumproblems