MiR-25-3p regulates pulmonary arteriovenous malformation after Glenn procedure in patients with univentricular heart via the PHLPP2-HIF-1α axis

Abstract The detailed mechanism of pulmonary arteriovenous malformations after Glenn surgery (G-PAVMs) in cyanotic congenital heart disease (CHD) remains unclear. Microarray in situ hybridization was performed to assess the miRNA (miRNA) profiles of serum from pediatric patients (0–6 years of age) w...

Full description

Saved in:
Bibliographic Details
Main Authors: Junpei Kawamura, Munekazu Yamakuchi, Kentaro Ueno, Teruto Hashiguchi, Yasuhiro Okamoto
Format: Article
Language:English
Published: Nature Portfolio 2025-02-01
Series:Scientific Reports
Subjects:
Online Access:https://doi.org/10.1038/s41598-025-88840-5
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract The detailed mechanism of pulmonary arteriovenous malformations after Glenn surgery (G-PAVMs) in cyanotic congenital heart disease (CHD) remains unclear. Microarray in situ hybridization was performed to assess the miRNA (miRNA) profiles of serum from pediatric patients (0–6 years of age) with G-PAVMs and after the Fontan procedure without G-PAVMs. In addition, we investigated the tube formation, migration, and proliferation of human lung microvascular endothelial cells (HMVEC-L) transfected with miR-25-3p mimic, miR-25-3p inhibitor, or PHLPP2 small interfering RNA, and examined HIF-1α/VEGF-A signaling after hypoxic stimulation. Serum miRNAs that showed ≥ 2-fold higher levels in patients with G-PAVMs than in other patients were selected. MiR-25-3p was significantly upregulated in the pulmonary artery sera of the post-Glenn group than in the post-Fontan group. We identified PHLPP2 as a direct target of miR-25-3p. PHLPP2 expression was significantly decreased in HMVEC-L transfected with miR-25-3p mimic compared to the control cells. HIF-1α and VEGF-A expression levels were increased in HMVEC-L transfected with miR-25-3p mimic compared to the control cells in a PHLPP2/Akt/mTOR signaling-dependent manner after hypoxic stimulation. MiR-25-3p promoted HMVEC-L angiogenesis, proliferation, and migration under hypoxic conditions. MiR-25-3p in the pulmonary arteries may contribute to G-PAVM development.
ISSN:2045-2322