Extensions of the Hardy-Littlewood inequalities for Schwarz symmetrization

For a class of functions H:(0,∞)×ℝ+2→ℝ, including discontinuous functions of Carathéodory type, we establish that ∫ℝNH(|x|,u(x),v(x))dx≤∫ℝNH(|x|,u*(x),v*(x))dx, where u*(x) and v*(x) denote the Schwarz symmetrizations of nonnegative functions u and v.

Saved in:
Bibliographic Details
Main Authors: H. Hajaiej, C. A. Stuart
Format: Article
Language:English
Published: Wiley 2004-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/S0161171204402348
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841524840592310272
author H. Hajaiej
C. A. Stuart
author_facet H. Hajaiej
C. A. Stuart
author_sort H. Hajaiej
collection DOAJ
description For a class of functions H:(0,∞)×ℝ+2→ℝ, including discontinuous functions of Carathéodory type, we establish that ∫ℝNH(|x|,u(x),v(x))dx≤∫ℝNH(|x|,u*(x),v*(x))dx, where u*(x) and v*(x) denote the Schwarz symmetrizations of nonnegative functions u and v.
format Article
id doaj-art-2a86902d0f16430cba5935cbb3bb5cb4
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 2004-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-2a86902d0f16430cba5935cbb3bb5cb42025-02-03T05:47:10ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252004-01-012004593129315010.1155/S0161171204402348Extensions of the Hardy-Littlewood inequalities for Schwarz symmetrizationH. Hajaiej0C. A. Stuart1Department of Mathematics, University of Virginia, Charlottesville 22902, VA, USAInstitut d'Analyse et Calcul Scientifique (IACS), Faculte des Sciences de Base (FSB), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, SwitzerlandFor a class of functions H:(0,∞)×ℝ+2→ℝ, including discontinuous functions of Carathéodory type, we establish that ∫ℝNH(|x|,u(x),v(x))dx≤∫ℝNH(|x|,u*(x),v*(x))dx, where u*(x) and v*(x) denote the Schwarz symmetrizations of nonnegative functions u and v.http://dx.doi.org/10.1155/S0161171204402348
spellingShingle H. Hajaiej
C. A. Stuart
Extensions of the Hardy-Littlewood inequalities for Schwarz symmetrization
International Journal of Mathematics and Mathematical Sciences
title Extensions of the Hardy-Littlewood inequalities for Schwarz symmetrization
title_full Extensions of the Hardy-Littlewood inequalities for Schwarz symmetrization
title_fullStr Extensions of the Hardy-Littlewood inequalities for Schwarz symmetrization
title_full_unstemmed Extensions of the Hardy-Littlewood inequalities for Schwarz symmetrization
title_short Extensions of the Hardy-Littlewood inequalities for Schwarz symmetrization
title_sort extensions of the hardy littlewood inequalities for schwarz symmetrization
url http://dx.doi.org/10.1155/S0161171204402348
work_keys_str_mv AT hhajaiej extensionsofthehardylittlewoodinequalitiesforschwarzsymmetrization
AT castuart extensionsofthehardylittlewoodinequalitiesforschwarzsymmetrization