On a General Conditional Cauchy Functional Equation

Let $(G,+)$ be an abelian group and $Y$  a linear space over the field $\Bbb{F}\in\{\Bbb{R}, \Bbb{C}\}$. In this paper, we investigate the conditional Cauchy functional equation \[f(x+y)\neq af(x)+bf(y)\quad\Rightarrow \quad f(x+y)=f(x)+f(y),\quad x,y\in G,\] for functions $f:G\to Y$, where  $a,b\in...

Full description

Saved in:
Bibliographic Details
Main Authors: Elham Mohammadi, Abbas Najati, Yavar Khedmati Yengejeh
Format: Article
Language:English
Published: University of Maragheh 2024-03-01
Series:Sahand Communications in Mathematical Analysis
Subjects:
Online Access:https://scma.maragheh.ac.ir/article_710730_1097db7f4cdaf2bb076df721ce97d691.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1823859383239442432
author Elham Mohammadi
Abbas Najati
Yavar Khedmati Yengejeh
author_facet Elham Mohammadi
Abbas Najati
Yavar Khedmati Yengejeh
author_sort Elham Mohammadi
collection DOAJ
description Let $(G,+)$ be an abelian group and $Y$  a linear space over the field $\Bbb{F}\in\{\Bbb{R}, \Bbb{C}\}$. In this paper, we investigate the conditional Cauchy functional equation \[f(x+y)\neq af(x)+bf(y)\quad\Rightarrow \quad f(x+y)=f(x)+f(y),\quad x,y\in G,\] for functions $f:G\to Y$, where  $a,b\in \Bbb{F}$ are fixed constants. The general solution and stability of this functional equation are described.
format Article
id doaj-art-2a3665ad9b59459686f8902977c24207
institution Kabale University
issn 2322-5807
2423-3900
language English
publishDate 2024-03-01
publisher University of Maragheh
record_format Article
series Sahand Communications in Mathematical Analysis
spelling doaj-art-2a3665ad9b59459686f8902977c242072025-02-11T05:24:46ZengUniversity of MaraghehSahand Communications in Mathematical Analysis2322-58072423-39002024-03-0121231532610.22130/scma.2023.2006802.1386710730On a General Conditional Cauchy Functional EquationElham Mohammadi0Abbas Najati1Yavar Khedmati Yengejeh2Department of Mathematics, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran.Department of Mathematics, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran.Department of Mathematics, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran.Let $(G,+)$ be an abelian group and $Y$  a linear space over the field $\Bbb{F}\in\{\Bbb{R}, \Bbb{C}\}$. In this paper, we investigate the conditional Cauchy functional equation \[f(x+y)\neq af(x)+bf(y)\quad\Rightarrow \quad f(x+y)=f(x)+f(y),\quad x,y\in G,\] for functions $f:G\to Y$, where  $a,b\in \Bbb{F}$ are fixed constants. The general solution and stability of this functional equation are described.https://scma.maragheh.ac.ir/article_710730_1097db7f4cdaf2bb076df721ce97d691.pdfabelian groupconditional functional equationmikusiński’s functional equationstability
spellingShingle Elham Mohammadi
Abbas Najati
Yavar Khedmati Yengejeh
On a General Conditional Cauchy Functional Equation
Sahand Communications in Mathematical Analysis
abelian group
conditional functional equation
mikusiński’s functional equation
stability
title On a General Conditional Cauchy Functional Equation
title_full On a General Conditional Cauchy Functional Equation
title_fullStr On a General Conditional Cauchy Functional Equation
title_full_unstemmed On a General Conditional Cauchy Functional Equation
title_short On a General Conditional Cauchy Functional Equation
title_sort on a general conditional cauchy functional equation
topic abelian group
conditional functional equation
mikusiński’s functional equation
stability
url https://scma.maragheh.ac.ir/article_710730_1097db7f4cdaf2bb076df721ce97d691.pdf
work_keys_str_mv AT elhammohammadi onageneralconditionalcauchyfunctionalequation
AT abbasnajati onageneralconditionalcauchyfunctionalequation
AT yavarkhedmatiyengejeh onageneralconditionalcauchyfunctionalequation