Hadamard Product Arguments and Their Applications

The Hadamard product (also known as element-wise multiplication) is a fundamental operation in linear algebra, performed by multiplying corresponding elements of two matrices with the same dimensions. This operation plays a crucial role in various fields, including cryptography, where it enables eff...

Full description

Saved in:
Bibliographic Details
Main Authors: Kyeongtae Lee, Hankyung Ko, Donghwan Oh, Jihye Kim, Hyunok Oh
Format: Article
Language:English
Published: IEEE 2025-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10981717/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850136621372932096
author Kyeongtae Lee
Hankyung Ko
Donghwan Oh
Jihye Kim
Hyunok Oh
author_facet Kyeongtae Lee
Hankyung Ko
Donghwan Oh
Jihye Kim
Hyunok Oh
author_sort Kyeongtae Lee
collection DOAJ
description The Hadamard product (also known as element-wise multiplication) is a fundamental operation in linear algebra, performed by multiplying corresponding elements of two matrices with the same dimensions. This operation plays a crucial role in various fields, including cryptography, where it enables efficient and parallelizable computations on large datasets&#x2014;particularly in the design of cryptographic protocols such as zero-knowledge proofs. In this paper, we propose a transparent and efficient method for proving the Hadamard product between vectors that are independently committed in the groups <inline-formula> <tex-math notation="LaTeX">$\mathbb {G}_{1}$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$\mathbb {G}_{2}$ </tex-math></inline-formula> under a pairing operation <inline-formula> <tex-math notation="LaTeX">$ e: \mathbb {G}_{1} \times \mathbb {G}_{2} \to \mathbb {G}_{T} $ </tex-math></inline-formula>. For a vector of length n, the prover has a complexity of <inline-formula> <tex-math notation="LaTeX">${\mathcal {O}}_{\lambda }(n)$ </tex-math></inline-formula>, while the proof size is <inline-formula> <tex-math notation="LaTeX">${\mathcal {O}}_{\lambda }(\log n)$ </tex-math></inline-formula>. The verifier operates with a complexity of <inline-formula> <tex-math notation="LaTeX">${\mathcal {O}}_{\lambda }(\log n)$ </tex-math></inline-formula>, which includes <inline-formula> <tex-math notation="LaTeX">$\mathcal {O}(\log n)$ </tex-math></inline-formula> operations in <inline-formula> <tex-math notation="LaTeX">$\mathbb {G}_{T}$ </tex-math></inline-formula> and only <inline-formula> <tex-math notation="LaTeX">$\mathcal {O}(1)$ </tex-math></inline-formula> pairing operations, making verification highly efficient. We prove the security of our scheme under the Symmetric External Diffie-Hellman (SXDH) assumption. Furthermore, we propose an aggregator for Groth16 (EUROCRYPT 2016) zk-SNARKs and a proof aggregation technique for the general case of the KZG polynomial commitment scheme (ASIACRYPT 2010), where all <inline-formula> <tex-math notation="LaTeX">$\textsf {crs}$ </tex-math></inline-formula> are distinct. Both applications do not require an additional trusted setup, support logarithmic-sized aggregated proofs, and significantly reduce the verifier&#x2019;s pairing operations to <inline-formula> <tex-math notation="LaTeX">$\mathcal {O}(1)$ </tex-math></inline-formula>.
format Article
id doaj-art-2a21b02c6453401ea6ca2290d2da1609
institution OA Journals
issn 2169-3536
language English
publishDate 2025-01-01
publisher IEEE
record_format Article
series IEEE Access
spelling doaj-art-2a21b02c6453401ea6ca2290d2da16092025-08-20T02:31:04ZengIEEEIEEE Access2169-35362025-01-0113797367975610.1109/ACCESS.2025.356610410981717Hadamard Product Arguments and Their ApplicationsKyeongtae Lee0Hankyung Ko1https://orcid.org/0000-0001-9430-1768Donghwan Oh2https://orcid.org/0009-0001-2728-9460Jihye Kim3https://orcid.org/0000-0003-2953-7883Hyunok Oh4https://orcid.org/0000-0002-9044-7441Department of Information Systems, Hanyang University, Seoul, South KoreaDepartment of Information Systems, Hanyang University, Seoul, South KoreaDepartment of Information Systems, Hanyang University, Seoul, South KoreaDepartment of Electronics and Information System Engineering, Kookmin University, Seoul, South KoreaDepartment of Information Systems, Hanyang University, Seoul, South KoreaThe Hadamard product (also known as element-wise multiplication) is a fundamental operation in linear algebra, performed by multiplying corresponding elements of two matrices with the same dimensions. This operation plays a crucial role in various fields, including cryptography, where it enables efficient and parallelizable computations on large datasets&#x2014;particularly in the design of cryptographic protocols such as zero-knowledge proofs. In this paper, we propose a transparent and efficient method for proving the Hadamard product between vectors that are independently committed in the groups <inline-formula> <tex-math notation="LaTeX">$\mathbb {G}_{1}$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$\mathbb {G}_{2}$ </tex-math></inline-formula> under a pairing operation <inline-formula> <tex-math notation="LaTeX">$ e: \mathbb {G}_{1} \times \mathbb {G}_{2} \to \mathbb {G}_{T} $ </tex-math></inline-formula>. For a vector of length n, the prover has a complexity of <inline-formula> <tex-math notation="LaTeX">${\mathcal {O}}_{\lambda }(n)$ </tex-math></inline-formula>, while the proof size is <inline-formula> <tex-math notation="LaTeX">${\mathcal {O}}_{\lambda }(\log n)$ </tex-math></inline-formula>. The verifier operates with a complexity of <inline-formula> <tex-math notation="LaTeX">${\mathcal {O}}_{\lambda }(\log n)$ </tex-math></inline-formula>, which includes <inline-formula> <tex-math notation="LaTeX">$\mathcal {O}(\log n)$ </tex-math></inline-formula> operations in <inline-formula> <tex-math notation="LaTeX">$\mathbb {G}_{T}$ </tex-math></inline-formula> and only <inline-formula> <tex-math notation="LaTeX">$\mathcal {O}(1)$ </tex-math></inline-formula> pairing operations, making verification highly efficient. We prove the security of our scheme under the Symmetric External Diffie-Hellman (SXDH) assumption. Furthermore, we propose an aggregator for Groth16 (EUROCRYPT 2016) zk-SNARKs and a proof aggregation technique for the general case of the KZG polynomial commitment scheme (ASIACRYPT 2010), where all <inline-formula> <tex-math notation="LaTeX">$\textsf {crs}$ </tex-math></inline-formula> are distinct. Both applications do not require an additional trusted setup, support logarithmic-sized aggregated proofs, and significantly reduce the verifier&#x2019;s pairing operations to <inline-formula> <tex-math notation="LaTeX">$\mathcal {O}(1)$ </tex-math></inline-formula>.https://ieeexplore.ieee.org/document/10981717/Zero-knowledge proofpairing-based cryptographySNARKprivacy
spellingShingle Kyeongtae Lee
Hankyung Ko
Donghwan Oh
Jihye Kim
Hyunok Oh
Hadamard Product Arguments and Their Applications
IEEE Access
Zero-knowledge proof
pairing-based cryptography
SNARK
privacy
title Hadamard Product Arguments and Their Applications
title_full Hadamard Product Arguments and Their Applications
title_fullStr Hadamard Product Arguments and Their Applications
title_full_unstemmed Hadamard Product Arguments and Their Applications
title_short Hadamard Product Arguments and Their Applications
title_sort hadamard product arguments and their applications
topic Zero-knowledge proof
pairing-based cryptography
SNARK
privacy
url https://ieeexplore.ieee.org/document/10981717/
work_keys_str_mv AT kyeongtaelee hadamardproductargumentsandtheirapplications
AT hankyungko hadamardproductargumentsandtheirapplications
AT donghwanoh hadamardproductargumentsandtheirapplications
AT jihyekim hadamardproductargumentsandtheirapplications
AT hyunokoh hadamardproductargumentsandtheirapplications