Android malware detection based on improved random forest

Aiming at the defect of vote principle in random forest algorithm which is incapable of distinguishing the differences between strong classifier and weak classifier,a weighted voting improved method was proposed,and an improved random forest classification (IRFCM) was proposed to detect Android malw...

Full description

Saved in:
Bibliographic Details
Main Authors: Hong-yu YANG, Jin XU
Format: Article
Language:zho
Published: Editorial Department of Journal on Communications 2017-04-01
Series:Tongxin xuebao
Subjects:
Online Access:http://www.joconline.com.cn/zh/article/doi/10.11959/j.issn.1000-436x.2017073/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Aiming at the defect of vote principle in random forest algorithm which is incapable of distinguishing the differences between strong classifier and weak classifier,a weighted voting improved method was proposed,and an improved random forest classification (IRFCM) was proposed to detect Android malware on the basis of this method.The IRFCM chose Permission information and Intent information as attribute features from AndroidManifest.xml files and optimized them,then applied the model to classify the final feature vectors.The experimental results in Weka environment show that IRFCM has better classification accuracy and classification efficiency.
ISSN:1000-436X