Intratumor heterogeneity in KRAS signaling shapes treatment resistance

Summary: KRAS mutations are linked to some of the deadliest forms of cancer. Pharmacological studies suggest that co-targeting KRAS with feedback/bypass pathways could lead to enhanced anti-tumor activity. The underlying premise is that cancers display a deep-rooted hypersensitivity to KRAS inactiva...

Full description

Saved in:
Bibliographic Details
Main Authors: Oleksi Petrenko, Varvara Kirillov, Stephen D'Amico, Nancy C. Reich
Format: Article
Language:English
Published: Elsevier 2025-02-01
Series:iScience
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S258900422402889X
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Summary: KRAS mutations are linked to some of the deadliest forms of cancer. Pharmacological studies suggest that co-targeting KRAS with feedback/bypass pathways could lead to enhanced anti-tumor activity. The underlying premise is that cancers display a deep-rooted hypersensitivity to KRAS inactivation. Here, we investigate the role of intratumor heterogeneity in pancreatic ductal adenocarcinoma, focusing on oncogenic KRAS addiction and treatment resistance. Integrated analysis of single-cell and bulk RNA sequencing data reveals that most tumors display a mixture of cells with vastly different degrees of KRAS dependency. We identify distinct cell populations that vary in their gene expression patterns pertaining to the predicted level of KRAS signaling activity, cell growth, and differentiation commitment within each tumor. Selective targeting of mutant KRAS suppresses the growth of tumor cells with high RAS/mitogen-activated protein kinase (MAPK) activity while sparing pre-existing subsets with low RAS signaling activity, necessitating alternative treatments. Combination immunotherapy leads to durable tumor regression in preclinical models.
ISSN:2589-0042