Text Analysis of Digital Commentary on Ice and Snow Tourism Based on Artificial Intelligence and Long Short-Term Memory Neural Network

The comments on ice and snow tourism are characterized by high levels of noise, unstructured content, and complex information. However, existing sentiment analysis methods exhibit significant limitations in terms of accuracy and the depth of feature extraction. To address these challenges, this stud...

Full description

Saved in:
Bibliographic Details
Main Authors: Qi Zhuang, Zhengjie Chu, Jun Li
Format: Article
Language:English
Published: IEEE 2025-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10910133/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The comments on ice and snow tourism are characterized by high levels of noise, unstructured content, and complex information. However, existing sentiment analysis methods exhibit significant limitations in terms of accuracy and the depth of feature extraction. To address these challenges, this study proposes an intelligent sentiment analysis algorithm based on a multi-model fusion approach: the Improved Dynamic Convolutional and Attention-based Bidirectional Long Short-Term Memory Model (IDCAN-BiLSTM). The aim is to enhance the effectiveness of sentiment analysis for ice and snow tourism reviews. Firstly, the review data is cleaned, denoised, and segmented. High-quality text vector embeddings are then generated using pre-trained Bidirectional Encoder Representations from Transformers (BERT) to capture the deep semantic features of the review text. Subsequently, the IDCAN-BiLSTM model employs a Dynamic Convolutional Neural Network (DCNN) to extract the local features of reviews, thereby increasing sensitivity to specific sentiment words. Following this, a Multi-Head Attention (MHA) mechanism is utilized to focus on key sentiment information within the reviews, effectively addressing the challenges posed by complex and lengthy texts. Finally, the Bidirectional Long Short-Term Memory (BiLSTM) module comprehensively captures the global contextual information in the reviews, improving both the sentiment classification accuracy and the contextual recognition capabilities of the model. Experimental results demonstrate that the IDCAN-BiLSTM model achieves outstanding performance in the sentiment classification of ice and snow tourism reviews, with an accuracy of 92.17% and an F1 score of 0.93. These results significantly surpass those of traditional sentiment analysis methods. In particular, the model shows superior performance in the sentiment classification of long review texts, effectively enhancing the accuracy and granularity of sentiment recognition through dynamic convolution and the self-attention mechanism. Moreover, the model distinguishes sentiment tendencies across different user groups regarding their experiences in ice and snow tourism. This capability provides valuable data support for optimizing services and enabling precision marketing strategies in the ice and snow tourism sector.
ISSN:2169-3536