Effect of Long-Wavelength Track Irregularities on Vehicle Dynamic Responses

Long-wavelength track irregularities have obvious influence on ride comfort and running stability of high-speed trains. Meanwhile, it brings risk to the inspection of track irregularities since ordinary inspection equipment has difficulties in covering long wavelengths. Previous research on the effe...

Full description

Saved in:
Bibliographic Details
Main Authors: Tao Xin, Pengsong Wang, Yu Ding
Format: Article
Language:English
Published: Wiley 2019-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2019/4178065
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Long-wavelength track irregularities have obvious influence on ride comfort and running stability of high-speed trains. Meanwhile, it brings risk to the inspection of track irregularities since ordinary inspection equipment has difficulties in covering long wavelengths. Previous research on the effect of long-wavelength track irregularities is rare. In order to find the relationship between long-wavelength irregularities and vehicle dynamic responses, a numerical vehicle-track coupling dynamic model based on multibody dynamics and finite element theories is established by using a self-compiling program. One case study is given as an example to show the methodology of determining the sensitive long wavelength and management amplitude of track longitudinal-level irregularities in high-speed railway. The simulation results show that the sensitive long wavelength has a strong correlation with train speed and natural frequency. The simulation and field test results are in good agreement.
ISSN:1070-9622
1875-9203