Identification of naturally occurring drug-resistant mutations of SARS-CoV-2 papain-like protease
Abstract The SARS-CoV-2 papain-like protease (PLpro) is a cysteine protease that cleaves viral polyproteins and antagonizes the host immune response during viral replication. Jun12682 and PF-07957472 are the first-in-class PLpro inhibitors showing potent in vivo antiviral efficacy in mouse models. I...
Saved in:
| Main Authors: | , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-05-01
|
| Series: | Nature Communications |
| Online Access: | https://doi.org/10.1038/s41467-025-59922-9 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract The SARS-CoV-2 papain-like protease (PLpro) is a cysteine protease that cleaves viral polyproteins and antagonizes the host immune response during viral replication. Jun12682 and PF-07957472 are the first-in-class PLpro inhibitors showing potent in vivo antiviral efficacy in mouse models. In this study, we characterize naturally occurring mutations at residues located at the drug-binding site of Jun12682. The results reveal several PLpro mutants showing significant drug resistance while maintaining comparable enzymatic activity as the wild-type PLpro. The physiological relevance of the identified drug-resistant mutants, including E167G and Q269H, is validated through independent serial viral passage experiments. Molecular dynamics simulations and perturbative free energy calculations show that drug-resistant PLpro mutants weaken hydrogen bonding and π-π stacking interactions. Collectively, this study identifies E167, Y268, and Q269 as drug-resistant hotspots for PLpro inhibitors that bind to the BL2 loop and groove region, which are valuable in informing the design of the next-generation PLpro inhibitors. |
|---|---|
| ISSN: | 2041-1723 |