A Review of Vessel Time of Arrival Prediction on Waterway Networks: Current Trends, Open Issues, and Future Directions

With the vast majority of global trade volume and value reliant on maritime transport, accurate prediction of vessel estimated time of arrival (ETA) is crucial for optimizing supply chain efficiency and managing logistical complexities in port operations. This review paper systematically examines th...

Full description

Saved in:
Bibliographic Details
Main Authors: Abdullah Al Noman, Aaron Heuermann, Stefan Wiesner, Klaus-Dieter Thoben
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Computers
Subjects:
Online Access:https://www.mdpi.com/2073-431X/14/2/41
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:With the vast majority of global trade volume and value reliant on maritime transport, accurate prediction of vessel estimated time of arrival (ETA) is crucial for optimizing supply chain efficiency and managing logistical complexities in port operations. This review paper systematically examines the current state of research and practices in the field of vessel ETA prediction, highlighting significant trends, methodologies, and technologies. It explores various approaches, including classical methods, machine learning and deep learning algorithms, and hybrid methods, developed to enhance the accuracy and reliability of vessel travel time and arrival time predictions. Additionally, this paper categorizes key influencing factors and metrics, and identifies open issues and challenges within current prediction models. Concluding with proposed future research directions aimed at addressing the identified gaps and leveraging technological advancements, this review emphasizes the importance of fostering innovation in maritime ETA prediction systems, particularly within the framework of Intelligent Transportation Systems (ITSs) and maritime logistics. By applying a systematic literature review (SLR) methodology and conducting an in-depth evaluation, the results provide a comprehensive overview of vessel ETA prediction for researchers, practitioners, and policy makers involved in maritime transport and logistics, and offer insights into the potential for improved efficiency, safety, and environmental sustainability in waterway networks.
ISSN:2073-431X