Intrinsic Optimal Control for Mechanical Systems on Lie Group

The intrinsic infinite horizon optimal control problem of mechanical systems on Lie group is investigated. The geometric optimal control problem is built on the intrinsic coordinate-free model, which is provided with Levi-Civita connection. In order to obtain an analytical solution of the optimal pr...

Full description

Saved in:
Bibliographic Details
Main Authors: Chao Liu, Shengjing Tang, Jie Guo
Format: Article
Language:English
Published: Wiley 2017-01-01
Series:Advances in Mathematical Physics
Online Access:http://dx.doi.org/10.1155/2017/6302430
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The intrinsic infinite horizon optimal control problem of mechanical systems on Lie group is investigated. The geometric optimal control problem is built on the intrinsic coordinate-free model, which is provided with Levi-Civita connection. In order to obtain an analytical solution of the optimal problem in the geometric viewpoint, a simplified nominal system on Lie group with an extra feedback loop is presented. With geodesic distance and Riemann metric on Lie group integrated into the cost function, a dynamic programming approach is employed and an analytical solution of the optimal problem on Lie group is obtained via the Hamilton-Jacobi-Bellman equation. For a special case on SO(3), the intrinsic optimal control method is used for a quadrotor rotation control problem and simulation results are provided to show the control performance.
ISSN:1687-9120
1687-9139