On the Arithmetic Average of the First <i>n</i> Primes

The arithmetic average of the first <i>n</i> primes, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mover accent="true"><mi>p</mi><mo>¯</mo>...

Full description

Saved in:
Bibliographic Details
Main Author: Matt Visser
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/14/2279
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849246475251351552
author Matt Visser
author_facet Matt Visser
author_sort Matt Visser
collection DOAJ
description The arithmetic average of the first <i>n</i> primes, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mover accent="true"><mi>p</mi><mo>¯</mo></mover><mi>n</mi></msub><mo>=</mo><mstyle scriptlevel="0" displaystyle="true"><mfrac><mn>1</mn><mi>n</mi></mfrac></mstyle><msubsup><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></msubsup><msub><mi>p</mi><mi>i</mi></msub></mrow></semantics></math></inline-formula>, exhibits very many interesting and subtle properties. Since the transformation from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>p</mi><mi>n</mi></msub><mo>→</mo><msub><mover accent="true"><mi>p</mi><mo>¯</mo></mover><mi>n</mi></msub></mrow></semantics></math></inline-formula> is extremely easy to invert, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>p</mi><mi>n</mi></msub><mo>=</mo><mi>n</mi><msub><mover accent="true"><mi>p</mi><mo>¯</mo></mover><mi>n</mi></msub><mo>−</mo><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><msub><mover accent="true"><mi>p</mi><mo>¯</mo></mover><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></mrow></semantics></math></inline-formula>, it is clear that these two sequences <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>p</mi><mi>n</mi></msub><mo>⟷</mo><msub><mover accent="true"><mi>p</mi><mo>¯</mo></mover><mi>n</mi></msub></mrow></semantics></math></inline-formula> must ultimately carry exactly the same information. But the averaged sequence <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mover accent="true"><mi>p</mi><mo>¯</mo></mover><mi>n</mi></msub></semantics></math></inline-formula>, while very closely correlated with the primes, (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mover accent="true"><mi>p</mi><mo>¯</mo></mover><mi>n</mi></msub><mo>∼</mo><mstyle scriptlevel="0" displaystyle="true"><mfrac><mn>1</mn><mn>2</mn></mfrac></mstyle><msub><mi>p</mi><mi>n</mi></msub></mrow></semantics></math></inline-formula>), is much “smoother” and much better behaved. Using extensions of various standard results, I shall demonstrate that the prime-averaged sequence <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mover accent="true"><mi>p</mi><mo>¯</mo></mover><mi>n</mi></msub></semantics></math></inline-formula> satisfies prime-averaged analogues of the Cramer, Andrica, Legendre, Oppermann, Brocard, Fourges, Firoozbakht, Nicholson, and Farhadian conjectures. (So these prime-averaged analogues are not conjectures; they are theorems). The crucial key to enabling this pleasant behaviour is the “smoothing” process inherent in averaging. While the asymptotic behaviour of the two sequences is very closely correlated, the local fluctuations are quite different.
format Article
id doaj-art-290bacc34e7d4a37b080742971115b85
institution Kabale University
issn 2227-7390
language English
publishDate 2025-07-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj-art-290bacc34e7d4a37b080742971115b852025-08-20T03:58:30ZengMDPI AGMathematics2227-73902025-07-011314227910.3390/math13142279On the Arithmetic Average of the First <i>n</i> PrimesMatt Visser0School of Mathematics and Statistics, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New ZealandThe arithmetic average of the first <i>n</i> primes, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mover accent="true"><mi>p</mi><mo>¯</mo></mover><mi>n</mi></msub><mo>=</mo><mstyle scriptlevel="0" displaystyle="true"><mfrac><mn>1</mn><mi>n</mi></mfrac></mstyle><msubsup><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></msubsup><msub><mi>p</mi><mi>i</mi></msub></mrow></semantics></math></inline-formula>, exhibits very many interesting and subtle properties. Since the transformation from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>p</mi><mi>n</mi></msub><mo>→</mo><msub><mover accent="true"><mi>p</mi><mo>¯</mo></mover><mi>n</mi></msub></mrow></semantics></math></inline-formula> is extremely easy to invert, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>p</mi><mi>n</mi></msub><mo>=</mo><mi>n</mi><msub><mover accent="true"><mi>p</mi><mo>¯</mo></mover><mi>n</mi></msub><mo>−</mo><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><msub><mover accent="true"><mi>p</mi><mo>¯</mo></mover><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></mrow></semantics></math></inline-formula>, it is clear that these two sequences <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>p</mi><mi>n</mi></msub><mo>⟷</mo><msub><mover accent="true"><mi>p</mi><mo>¯</mo></mover><mi>n</mi></msub></mrow></semantics></math></inline-formula> must ultimately carry exactly the same information. But the averaged sequence <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mover accent="true"><mi>p</mi><mo>¯</mo></mover><mi>n</mi></msub></semantics></math></inline-formula>, while very closely correlated with the primes, (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mover accent="true"><mi>p</mi><mo>¯</mo></mover><mi>n</mi></msub><mo>∼</mo><mstyle scriptlevel="0" displaystyle="true"><mfrac><mn>1</mn><mn>2</mn></mfrac></mstyle><msub><mi>p</mi><mi>n</mi></msub></mrow></semantics></math></inline-formula>), is much “smoother” and much better behaved. Using extensions of various standard results, I shall demonstrate that the prime-averaged sequence <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mover accent="true"><mi>p</mi><mo>¯</mo></mover><mi>n</mi></msub></semantics></math></inline-formula> satisfies prime-averaged analogues of the Cramer, Andrica, Legendre, Oppermann, Brocard, Fourges, Firoozbakht, Nicholson, and Farhadian conjectures. (So these prime-averaged analogues are not conjectures; they are theorems). The crucial key to enabling this pleasant behaviour is the “smoothing” process inherent in averaging. While the asymptotic behaviour of the two sequences is very closely correlated, the local fluctuations are quite different.https://www.mdpi.com/2227-7390/13/14/2279the n-th prime pnaverage of the first n primesprime-averaged conjecturesCramerAndricaLegendre
spellingShingle Matt Visser
On the Arithmetic Average of the First <i>n</i> Primes
Mathematics
the n-th prime pn
average of the first n primes
prime-averaged conjectures
Cramer
Andrica
Legendre
title On the Arithmetic Average of the First <i>n</i> Primes
title_full On the Arithmetic Average of the First <i>n</i> Primes
title_fullStr On the Arithmetic Average of the First <i>n</i> Primes
title_full_unstemmed On the Arithmetic Average of the First <i>n</i> Primes
title_short On the Arithmetic Average of the First <i>n</i> Primes
title_sort on the arithmetic average of the first i n i primes
topic the n-th prime pn
average of the first n primes
prime-averaged conjectures
Cramer
Andrica
Legendre
url https://www.mdpi.com/2227-7390/13/14/2279
work_keys_str_mv AT mattvisser onthearithmeticaverageofthefirstiniprimes