Pan-cancer immune and stromal deconvolution predicts clinical outcomes and mutation profiles

Abstract Traditional gene expression deconvolution methods assess a limited number of cell types, therefore do not capture the full complexity of the tumor microenvironment (TME). Here, we integrate nine deconvolution tools to assess 79 TME cell types in 10,592 tumors across 33 different cancer type...

Full description

Saved in:
Bibliographic Details
Main Authors: Bhavneet Bhinder, Verena Friedl, Sunantha Sethuraman, Davide Risso, Kami E. Chiotti, R. Jay Mashl, Kyle P. Ellrott, Jordan A. Lee, Christopher K. Wong, Kofi Gyan, Aditya Deshpande, Marcin Imielinski, Rohan Bareja, Josh Stuart, Myron Peto, Katherine A. Hoadley, Alexander J. Lazar, Andrew D. Cherniack, Jingchun Zhu, Shaolong Cao, Mark Rubin, Wenyi Wang, Oliver F. Bathe, Nicolas Robine, Li Ding, Peter W. Laird, Wanding Zhou, Hui Shen, Vésteinn Thorsson, Jen Jen Yeh, Matthew H. Bailey, Daniel Cui Zhou, Xianlu L. Peng, Mary Goldman, Yongsheng Li, Anil Korkut, Nidhi Sahni, D. Neil Hayes, Michael K. A. Mensah, Ina Felau, Anab Kemal, Samantha Caesar-Johnson, John A. Demchok, Liming Yang, Martin L. Ferguson, Roy Tarnuzzer, Zhining Wang, Jean C. Zenklusen, The Cancer Genome Atlas Analysis Network, Paul Spellman, Olivier Elemento
Format: Article
Language:English
Published: Nature Portfolio 2025-07-01
Series:Scientific Reports
Subjects:
Online Access:https://doi.org/10.1038/s41598-025-09075-y
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849334388662206464
author Bhavneet Bhinder
Verena Friedl
Sunantha Sethuraman
Davide Risso
Kami E. Chiotti
R. Jay Mashl
Kyle P. Ellrott
Jordan A. Lee
Christopher K. Wong
Kofi Gyan
Aditya Deshpande
Marcin Imielinski
Rohan Bareja
Josh Stuart
Myron Peto
Katherine A. Hoadley
Alexander J. Lazar
Andrew D. Cherniack
Jingchun Zhu
Shaolong Cao
Mark Rubin
Wenyi Wang
Oliver F. Bathe
Nicolas Robine
Li Ding
Peter W. Laird
Wanding Zhou
Hui Shen
Vésteinn Thorsson
Jen Jen Yeh
Matthew H. Bailey
Daniel Cui Zhou
Xianlu L. Peng
Mary Goldman
Yongsheng Li
Anil Korkut
Nidhi Sahni
D. Neil Hayes
Michael K. A. Mensah
Ina Felau
Anab Kemal
Samantha Caesar-Johnson
John A. Demchok
Liming Yang
Martin L. Ferguson
Roy Tarnuzzer
Zhining Wang
Jean C. Zenklusen
The Cancer Genome Atlas Analysis Network
Paul Spellman
Olivier Elemento
author_facet Bhavneet Bhinder
Verena Friedl
Sunantha Sethuraman
Davide Risso
Kami E. Chiotti
R. Jay Mashl
Kyle P. Ellrott
Jordan A. Lee
Christopher K. Wong
Kofi Gyan
Aditya Deshpande
Marcin Imielinski
Rohan Bareja
Josh Stuart
Myron Peto
Katherine A. Hoadley
Alexander J. Lazar
Andrew D. Cherniack
Jingchun Zhu
Shaolong Cao
Mark Rubin
Wenyi Wang
Oliver F. Bathe
Nicolas Robine
Li Ding
Peter W. Laird
Wanding Zhou
Hui Shen
Vésteinn Thorsson
Jen Jen Yeh
Matthew H. Bailey
Daniel Cui Zhou
Xianlu L. Peng
Mary Goldman
Yongsheng Li
Anil Korkut
Nidhi Sahni
D. Neil Hayes
Michael K. A. Mensah
Ina Felau
Anab Kemal
Samantha Caesar-Johnson
John A. Demchok
Liming Yang
Martin L. Ferguson
Roy Tarnuzzer
Zhining Wang
Jean C. Zenklusen
The Cancer Genome Atlas Analysis Network
Paul Spellman
Olivier Elemento
author_sort Bhavneet Bhinder
collection DOAJ
description Abstract Traditional gene expression deconvolution methods assess a limited number of cell types, therefore do not capture the full complexity of the tumor microenvironment (TME). Here, we integrate nine deconvolution tools to assess 79 TME cell types in 10,592 tumors across 33 different cancer types, creating the most comprehensive analysis of the TME. In total, we found 41 patterns of immune infiltration and stroma profiles, identifying heterogeneous yet unique TME portraits for each cancer and several new findings. Our findings indicate that leukocytes play a major role in distinguishing various tumor types, and that a shared immune-rich TME cluster predicts better survival in bladder cancer for luminal and basal squamous subtypes, as well as in melanoma for RAS-hotspot subtypes. Our detailed deconvolution and mutational correlation analyses uncover 35 therapeutic target and candidate response biomarkers hypotheses (including CASP8 and RAS pathway genes).
format Article
id doaj-art-28f97bb0594a491c992bb80c6f0e11dc
institution Kabale University
issn 2045-2322
language English
publishDate 2025-07-01
publisher Nature Portfolio
record_format Article
series Scientific Reports
spelling doaj-art-28f97bb0594a491c992bb80c6f0e11dc2025-08-20T03:45:35ZengNature PortfolioScientific Reports2045-23222025-07-0115111610.1038/s41598-025-09075-yPan-cancer immune and stromal deconvolution predicts clinical outcomes and mutation profilesBhavneet Bhinder0Verena Friedl1Sunantha Sethuraman2Davide Risso3Kami E. Chiotti4R. Jay Mashl5Kyle P. Ellrott6Jordan A. Lee7Christopher K. Wong8Kofi Gyan9Aditya Deshpande10Marcin Imielinski11Rohan Bareja12Josh Stuart13Myron Peto14Katherine A. Hoadley15Alexander J. Lazar16Andrew D. Cherniack17Jingchun Zhu18Shaolong Cao19Mark Rubin20Wenyi Wang21Oliver F. Bathe22Nicolas Robine23Li Ding24Peter W. Laird25Wanding Zhou26Hui Shen27Vésteinn Thorsson28Jen Jen Yeh29Matthew H. Bailey30Daniel Cui Zhou31Xianlu L. Peng32Mary Goldman33Yongsheng Li34Anil Korkut35Nidhi Sahni36D. Neil Hayes37Michael K. A. Mensah38Ina Felau39Anab Kemal40Samantha Caesar-Johnson41John A. Demchok42Liming Yang43Martin L. Ferguson44Roy Tarnuzzer45Zhining Wang46Jean C. Zenklusen47The Cancer Genome Atlas Analysis NetworkPaul Spellman48Olivier Elemento49Englander Institute for Precision Medicine, Weill Cornell MedicineBiomolecular Engineering Department, School of Engineering, University of California, Santa CruzDivision of Oncology, Department of Medicine, Washington University in St. LouisDepartment of Statistical Sciences, University of PadovaDepartment of Molecular and Medical Genetics, Oregon Health & Science UniversityDivision of Oncology, Department of Medicine, Washington University in St. LouisDepartment of BioMedical Engineering, Oregon Health & Science UniversityDepartment of BioMedical Engineering, Oregon Health & Science UniversityBiomolecular Engineering Department, School of Engineering, University of California, Santa CruzEnglander Institute for Precision Medicine, Weill Cornell MedicineEnglander Institute for Precision Medicine, Weill Cornell MedicineEnglander Institute for Precision Medicine, Weill Cornell MedicineEnglander Institute for Precision Medicine, Weill Cornell MedicineUC Santa Cruz Genomics InstituteDepartment of Molecular and Medical Genetics, Oregon Health & Science UniversityLineberger Comprehensive Cancer Center, Department of Genetics, University of North Carolina at Chapel HillDepartments of Pathology, Genomics Medicine, Dermatology, & Translational Molecular Pathology, The University of Texas MD Anderson Cancer CenterBroad Institute of Harvard and MITUC Santa Cruz Genomics InstituteDepartment of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer CenterDepartment for BioMedical Research, University of BernDepartment of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer CenterDivision of Surgical Oncology, Tom Baker Cancer CentreNew York Genome Center, Computational BiologyDivision of Oncology, Department of Medicine, Washington University in St. LouisVan Andel InstituteVan Andel InstituteVan Andel InstituteInstitute for Systems BiologyDepartment of Pharmacology, Lineberger Comprehensive Cancer Center, University of North CarolinaDivision of Oncology, Department of Medicine, Washington University in St. LouisDivision of Oncology, Department of Medicine, Washington University in St. LouisDepartment of Pharmacology, Lineberger Comprehensive Cancer Center, University of North CarolinaUC Santa Cruz Genomics InstituteDepartment of Systems Biology, The University of Texas MD Anderson Cancer CenterDepartment of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer CenterDepartment of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer CenterUniversity of Tennessee Health Sciences CenterNational Cancer InstituteNational Cancer InstituteNational Cancer InstituteNational Cancer InstituteNational Cancer InstituteNational Cancer InstituteNational Cancer InstituteNational Cancer InstituteNational Cancer InstituteNational Cancer InstituteDepartment of Molecular and Medical Genetics, Oregon Health & Science UniversityEnglander Institute for Precision Medicine, Weill Cornell MedicineAbstract Traditional gene expression deconvolution methods assess a limited number of cell types, therefore do not capture the full complexity of the tumor microenvironment (TME). Here, we integrate nine deconvolution tools to assess 79 TME cell types in 10,592 tumors across 33 different cancer types, creating the most comprehensive analysis of the TME. In total, we found 41 patterns of immune infiltration and stroma profiles, identifying heterogeneous yet unique TME portraits for each cancer and several new findings. Our findings indicate that leukocytes play a major role in distinguishing various tumor types, and that a shared immune-rich TME cluster predicts better survival in bladder cancer for luminal and basal squamous subtypes, as well as in melanoma for RAS-hotspot subtypes. Our detailed deconvolution and mutational correlation analyses uncover 35 therapeutic target and candidate response biomarkers hypotheses (including CASP8 and RAS pathway genes).https://doi.org/10.1038/s41598-025-09075-yTumor microenvironmentiScoresIntegrated scoresCell type estimationDeconvolutionPan-cancer analysis
spellingShingle Bhavneet Bhinder
Verena Friedl
Sunantha Sethuraman
Davide Risso
Kami E. Chiotti
R. Jay Mashl
Kyle P. Ellrott
Jordan A. Lee
Christopher K. Wong
Kofi Gyan
Aditya Deshpande
Marcin Imielinski
Rohan Bareja
Josh Stuart
Myron Peto
Katherine A. Hoadley
Alexander J. Lazar
Andrew D. Cherniack
Jingchun Zhu
Shaolong Cao
Mark Rubin
Wenyi Wang
Oliver F. Bathe
Nicolas Robine
Li Ding
Peter W. Laird
Wanding Zhou
Hui Shen
Vésteinn Thorsson
Jen Jen Yeh
Matthew H. Bailey
Daniel Cui Zhou
Xianlu L. Peng
Mary Goldman
Yongsheng Li
Anil Korkut
Nidhi Sahni
D. Neil Hayes
Michael K. A. Mensah
Ina Felau
Anab Kemal
Samantha Caesar-Johnson
John A. Demchok
Liming Yang
Martin L. Ferguson
Roy Tarnuzzer
Zhining Wang
Jean C. Zenklusen
The Cancer Genome Atlas Analysis Network
Paul Spellman
Olivier Elemento
Pan-cancer immune and stromal deconvolution predicts clinical outcomes and mutation profiles
Scientific Reports
Tumor microenvironment
iScores
Integrated scores
Cell type estimation
Deconvolution
Pan-cancer analysis
title Pan-cancer immune and stromal deconvolution predicts clinical outcomes and mutation profiles
title_full Pan-cancer immune and stromal deconvolution predicts clinical outcomes and mutation profiles
title_fullStr Pan-cancer immune and stromal deconvolution predicts clinical outcomes and mutation profiles
title_full_unstemmed Pan-cancer immune and stromal deconvolution predicts clinical outcomes and mutation profiles
title_short Pan-cancer immune and stromal deconvolution predicts clinical outcomes and mutation profiles
title_sort pan cancer immune and stromal deconvolution predicts clinical outcomes and mutation profiles
topic Tumor microenvironment
iScores
Integrated scores
Cell type estimation
Deconvolution
Pan-cancer analysis
url https://doi.org/10.1038/s41598-025-09075-y
work_keys_str_mv AT bhavneetbhinder pancancerimmuneandstromaldeconvolutionpredictsclinicaloutcomesandmutationprofiles
AT verenafriedl pancancerimmuneandstromaldeconvolutionpredictsclinicaloutcomesandmutationprofiles
AT sunanthasethuraman pancancerimmuneandstromaldeconvolutionpredictsclinicaloutcomesandmutationprofiles
AT daviderisso pancancerimmuneandstromaldeconvolutionpredictsclinicaloutcomesandmutationprofiles
AT kamiechiotti pancancerimmuneandstromaldeconvolutionpredictsclinicaloutcomesandmutationprofiles
AT rjaymashl pancancerimmuneandstromaldeconvolutionpredictsclinicaloutcomesandmutationprofiles
AT kylepellrott pancancerimmuneandstromaldeconvolutionpredictsclinicaloutcomesandmutationprofiles
AT jordanalee pancancerimmuneandstromaldeconvolutionpredictsclinicaloutcomesandmutationprofiles
AT christopherkwong pancancerimmuneandstromaldeconvolutionpredictsclinicaloutcomesandmutationprofiles
AT kofigyan pancancerimmuneandstromaldeconvolutionpredictsclinicaloutcomesandmutationprofiles
AT adityadeshpande pancancerimmuneandstromaldeconvolutionpredictsclinicaloutcomesandmutationprofiles
AT marcinimielinski pancancerimmuneandstromaldeconvolutionpredictsclinicaloutcomesandmutationprofiles
AT rohanbareja pancancerimmuneandstromaldeconvolutionpredictsclinicaloutcomesandmutationprofiles
AT joshstuart pancancerimmuneandstromaldeconvolutionpredictsclinicaloutcomesandmutationprofiles
AT myronpeto pancancerimmuneandstromaldeconvolutionpredictsclinicaloutcomesandmutationprofiles
AT katherineahoadley pancancerimmuneandstromaldeconvolutionpredictsclinicaloutcomesandmutationprofiles
AT alexanderjlazar pancancerimmuneandstromaldeconvolutionpredictsclinicaloutcomesandmutationprofiles
AT andrewdcherniack pancancerimmuneandstromaldeconvolutionpredictsclinicaloutcomesandmutationprofiles
AT jingchunzhu pancancerimmuneandstromaldeconvolutionpredictsclinicaloutcomesandmutationprofiles
AT shaolongcao pancancerimmuneandstromaldeconvolutionpredictsclinicaloutcomesandmutationprofiles
AT markrubin pancancerimmuneandstromaldeconvolutionpredictsclinicaloutcomesandmutationprofiles
AT wenyiwang pancancerimmuneandstromaldeconvolutionpredictsclinicaloutcomesandmutationprofiles
AT oliverfbathe pancancerimmuneandstromaldeconvolutionpredictsclinicaloutcomesandmutationprofiles
AT nicolasrobine pancancerimmuneandstromaldeconvolutionpredictsclinicaloutcomesandmutationprofiles
AT liding pancancerimmuneandstromaldeconvolutionpredictsclinicaloutcomesandmutationprofiles
AT peterwlaird pancancerimmuneandstromaldeconvolutionpredictsclinicaloutcomesandmutationprofiles
AT wandingzhou pancancerimmuneandstromaldeconvolutionpredictsclinicaloutcomesandmutationprofiles
AT huishen pancancerimmuneandstromaldeconvolutionpredictsclinicaloutcomesandmutationprofiles
AT vesteinnthorsson pancancerimmuneandstromaldeconvolutionpredictsclinicaloutcomesandmutationprofiles
AT jenjenyeh pancancerimmuneandstromaldeconvolutionpredictsclinicaloutcomesandmutationprofiles
AT matthewhbailey pancancerimmuneandstromaldeconvolutionpredictsclinicaloutcomesandmutationprofiles
AT danielcuizhou pancancerimmuneandstromaldeconvolutionpredictsclinicaloutcomesandmutationprofiles
AT xianlulpeng pancancerimmuneandstromaldeconvolutionpredictsclinicaloutcomesandmutationprofiles
AT marygoldman pancancerimmuneandstromaldeconvolutionpredictsclinicaloutcomesandmutationprofiles
AT yongshengli pancancerimmuneandstromaldeconvolutionpredictsclinicaloutcomesandmutationprofiles
AT anilkorkut pancancerimmuneandstromaldeconvolutionpredictsclinicaloutcomesandmutationprofiles
AT nidhisahni pancancerimmuneandstromaldeconvolutionpredictsclinicaloutcomesandmutationprofiles
AT dneilhayes pancancerimmuneandstromaldeconvolutionpredictsclinicaloutcomesandmutationprofiles
AT michaelkamensah pancancerimmuneandstromaldeconvolutionpredictsclinicaloutcomesandmutationprofiles
AT inafelau pancancerimmuneandstromaldeconvolutionpredictsclinicaloutcomesandmutationprofiles
AT anabkemal pancancerimmuneandstromaldeconvolutionpredictsclinicaloutcomesandmutationprofiles
AT samanthacaesarjohnson pancancerimmuneandstromaldeconvolutionpredictsclinicaloutcomesandmutationprofiles
AT johnademchok pancancerimmuneandstromaldeconvolutionpredictsclinicaloutcomesandmutationprofiles
AT limingyang pancancerimmuneandstromaldeconvolutionpredictsclinicaloutcomesandmutationprofiles
AT martinlferguson pancancerimmuneandstromaldeconvolutionpredictsclinicaloutcomesandmutationprofiles
AT roytarnuzzer pancancerimmuneandstromaldeconvolutionpredictsclinicaloutcomesandmutationprofiles
AT zhiningwang pancancerimmuneandstromaldeconvolutionpredictsclinicaloutcomesandmutationprofiles
AT jeanczenklusen pancancerimmuneandstromaldeconvolutionpredictsclinicaloutcomesandmutationprofiles
AT thecancergenomeatlasanalysisnetwork pancancerimmuneandstromaldeconvolutionpredictsclinicaloutcomesandmutationprofiles
AT paulspellman pancancerimmuneandstromaldeconvolutionpredictsclinicaloutcomesandmutationprofiles
AT olivierelemento pancancerimmuneandstromaldeconvolutionpredictsclinicaloutcomesandmutationprofiles