Residual and fixed modules

The article presents some sufficient conditions for the commutativity of transvections with elements of linear groups over division ring in the language of residual and fixed submodules. The residual and fixed submodules of the element $\sigma $ of the linear group are defined as the image and nucle...

Full description

Saved in:
Bibliographic Details
Main Authors: Yu. V. Petechuk, V. M. Petechuk
Format: Article
Language:deu
Published: Ivan Franko National University of Lviv 2020-06-01
Series:Математичні Студії
Subjects:
Online Access:http://matstud.org.ua/ojs/index.php/matstud/article/view/6
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849415405296156672
author Yu. V. Petechuk
V. M. Petechuk
author_facet Yu. V. Petechuk
V. M. Petechuk
author_sort Yu. V. Petechuk
collection DOAJ
description The article presents some sufficient conditions for the commutativity of transvections with elements of linear groups over division ring in the language of residual and fixed submodules. The residual and fixed submodules of the element $\sigma $ of the linear group are defined as the image and nucleus of the element $\sigma -1$ and are denoted by $R(\sigma)$ and $P(\sigma)$ respectively. It is proved that transvection ${\sigma }_1$ over an arbitrary body commutes with an element ${\sigma }_2$ for which $\mathop{\rm dim}R({\sigma }_2)=\mathop{\rm dim}R({\sigma }_2)\cap P({\sigma }_2)+l$, $l\le 1$, if and only if the inclusion system $R({\sigma }_1)\subseteq P({\sigma }_2)$, $R({\sigma }_2)\subseteq P({\sigma }_1)$. It is shown that for $l>1$ this statement is not always true.
format Article
id doaj-art-28f88e8b3a984c81928f395d02ed4cb0
institution Kabale University
issn 1027-4634
2411-0620
language deu
publishDate 2020-06-01
publisher Ivan Franko National University of Lviv
record_format Article
series Математичні Студії
spelling doaj-art-28f88e8b3a984c81928f395d02ed4cb02025-08-20T03:33:32ZdeuIvan Franko National University of LvivМатематичні Студії1027-46342411-06202020-06-0153211912410.30970/ms.53.2.119-1246Residual and fixed modulesYu. V. Petechuk0V. M. Petechuk1Transcarpathian Institute of Postgraduate Pedagogical Education, Uzhgorod, UkraineTranscarpathian Institute of Postgraduate Pedagogical Education, Uzhgorod, UkraineThe article presents some sufficient conditions for the commutativity of transvections with elements of linear groups over division ring in the language of residual and fixed submodules. The residual and fixed submodules of the element $\sigma $ of the linear group are defined as the image and nucleus of the element $\sigma -1$ and are denoted by $R(\sigma)$ and $P(\sigma)$ respectively. It is proved that transvection ${\sigma }_1$ over an arbitrary body commutes with an element ${\sigma }_2$ for which $\mathop{\rm dim}R({\sigma }_2)=\mathop{\rm dim}R({\sigma }_2)\cap P({\sigma }_2)+l$, $l\le 1$, if and only if the inclusion system $R({\sigma }_1)\subseteq P({\sigma }_2)$, $R({\sigma }_2)\subseteq P({\sigma }_1)$. It is shown that for $l>1$ this statement is not always true.http://matstud.org.ua/ojs/index.php/matstud/article/view/6linear groups over rings and division rings, residual and fixed modules, transvections, unipotent elements, conditions of commutativity.
spellingShingle Yu. V. Petechuk
V. M. Petechuk
Residual and fixed modules
Математичні Студії
linear groups over rings and division rings, residual and fixed modules, transvections, unipotent elements, conditions of commutativity.
title Residual and fixed modules
title_full Residual and fixed modules
title_fullStr Residual and fixed modules
title_full_unstemmed Residual and fixed modules
title_short Residual and fixed modules
title_sort residual and fixed modules
topic linear groups over rings and division rings, residual and fixed modules, transvections, unipotent elements, conditions of commutativity.
url http://matstud.org.ua/ojs/index.php/matstud/article/view/6
work_keys_str_mv AT yuvpetechuk residualandfixedmodules
AT vmpetechuk residualandfixedmodules