Method for Multi-Target Wireless Charging for Oil Field Inspection Drones

Wireless power transfer (WPT) systems are critical for enabling safe and efficient charging of inspection drones in flammable oilfield environments, yet existing solutions struggle with multi-target compatibility and reactive power losses. This study proposes a novel frequency-regulated LCC-S topolo...

Full description

Saved in:
Bibliographic Details
Main Authors: Yilong Wang, Li Ji, Ming Zhang
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Drones
Subjects:
Online Access:https://www.mdpi.com/2504-446X/9/5/381
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Wireless power transfer (WPT) systems are critical for enabling safe and efficient charging of inspection drones in flammable oilfield environments, yet existing solutions struggle with multi-target compatibility and reactive power losses. This study proposes a novel frequency-regulated LCC-S topology that achieves both constant current (CC) and constant voltage (CV) charging modes for heterogeneous drones using a single hardware configuration. By dynamically adjusting the operating frequency, the system minimizes the input impedance angle (θ < 10°) while maintaining load-independent CC and CV outputs, thereby reducing reactive power by 92% and ensuring spark-free operation in explosive atmospheres. Experimental validation with two distinct oilfield inspection drones demonstrates seamless mode transitions, zero-phase-angle (ZPA) resonance, and peak efficiencies of 92.57% and 91.12%, respectively. The universal design eliminates the need for complex alignment mechanisms, offering a scalable solution for multi-drone fleets in energy, agriculture, and disaster response applications.
ISSN:2504-446X