3D Multi-Domain MFS Analysis of Sound Pressure Level Reduction Between Connected Enclosures
In this paper, the authors study the 3D propagation of sound waves between two closed spaces. The separation element between the two rooms is considered to include either a small opening or a homogeneous lightweight panel, coupling the two spaces. A numerical study of this configuration is perfor...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Institute of Fundamental Technological Research Polish Academy of Sciences
2013-10-01
|
| Series: | Archives of Acoustics |
| Subjects: | |
| Online Access: | https://acoustics.ippt.pan.pl/index.php/aa/article/view/166 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849318529629683712 |
|---|---|
| author | Luıs GODINHO Fernando G. BRANCO Paulo AMADO MENDES |
| author_facet | Luıs GODINHO Fernando G. BRANCO Paulo AMADO MENDES |
| author_sort | Luıs GODINHO |
| collection | DOAJ |
| description | In this paper, the authors study the 3D propagation of sound waves between
two closed spaces. The separation element between the two rooms is considered to
include either a small opening or a homogeneous lightweight panel, coupling the two
spaces. A numerical study of this configuration is performed, trying to understand
the influence of the position and geometry of this opening in the sound pressure level
reduction curve at low and midfrequencies. Additionally, the coupling effect between
the two acoustic spaces is analyzed, in order to better understand its importance
when determining the sound pressure level reduction. Different boundary conditions
are ascribed to the walls of these rooms, simulating both the completely reflecting
and partially absorbing surfaces.
The numerical modelling was performed using a multi-domain formulation of the
Method of Fundamental Solutions (MFS). The system is composed of two coupled
rooms, limited by rigid or by absorbing walls, and separated by a thin wall (tending
to null thickness) with a small opening. An experimental validation of the pro-
posed model is presented, comparing its results with those found experimentally for
a reduced-scale model. It is important to note that, for such a configuration, a tra-
ditional single-domain approach using methods like the MFS or the BEM would
lead to undetermined equation systems, and thus the proposed model makes use of
a domain decomposition technique. |
| format | Article |
| id | doaj-art-28e17ea1e4494f4cade71493bb7ee40f |
| institution | Kabale University |
| issn | 0137-5075 2300-262X |
| language | English |
| publishDate | 2013-10-01 |
| publisher | Institute of Fundamental Technological Research Polish Academy of Sciences |
| record_format | Article |
| series | Archives of Acoustics |
| spelling | doaj-art-28e17ea1e4494f4cade71493bb7ee40f2025-08-20T03:50:48ZengInstitute of Fundamental Technological Research Polish Academy of SciencesArchives of Acoustics0137-50752300-262X2013-10-013633D Multi-Domain MFS Analysis of Sound Pressure Level Reduction Between Connected EnclosuresLuıs GODINHO0Fernando G. BRANCO1Paulo AMADO MENDES2University of Coimbra CICC, Department of Civil EngineeringUniversity of Coimbra CICC, Department of Civil EngineeringUniversity of Coimbra CICC, Department of Civil EngineeringIn this paper, the authors study the 3D propagation of sound waves between two closed spaces. The separation element between the two rooms is considered to include either a small opening or a homogeneous lightweight panel, coupling the two spaces. A numerical study of this configuration is performed, trying to understand the influence of the position and geometry of this opening in the sound pressure level reduction curve at low and midfrequencies. Additionally, the coupling effect between the two acoustic spaces is analyzed, in order to better understand its importance when determining the sound pressure level reduction. Different boundary conditions are ascribed to the walls of these rooms, simulating both the completely reflecting and partially absorbing surfaces. The numerical modelling was performed using a multi-domain formulation of the Method of Fundamental Solutions (MFS). The system is composed of two coupled rooms, limited by rigid or by absorbing walls, and separated by a thin wall (tending to null thickness) with a small opening. An experimental validation of the pro- posed model is presented, comparing its results with those found experimentally for a reduced-scale model. It is important to note that, for such a configuration, a tra- ditional single-domain approach using methods like the MFS or the BEM would lead to undetermined equation systems, and thus the proposed model makes use of a domain decomposition technique.https://acoustics.ippt.pan.pl/index.php/aa/article/view/166Method of Fundamental Solutionsdomain decompositionclosed spacessound pressure level reduction |
| spellingShingle | Luıs GODINHO Fernando G. BRANCO Paulo AMADO MENDES 3D Multi-Domain MFS Analysis of Sound Pressure Level Reduction Between Connected Enclosures Archives of Acoustics Method of Fundamental Solutions domain decomposition closed spaces sound pressure level reduction |
| title | 3D Multi-Domain MFS Analysis of Sound Pressure Level Reduction Between Connected Enclosures |
| title_full | 3D Multi-Domain MFS Analysis of Sound Pressure Level Reduction Between Connected Enclosures |
| title_fullStr | 3D Multi-Domain MFS Analysis of Sound Pressure Level Reduction Between Connected Enclosures |
| title_full_unstemmed | 3D Multi-Domain MFS Analysis of Sound Pressure Level Reduction Between Connected Enclosures |
| title_short | 3D Multi-Domain MFS Analysis of Sound Pressure Level Reduction Between Connected Enclosures |
| title_sort | 3d multi domain mfs analysis of sound pressure level reduction between connected enclosures |
| topic | Method of Fundamental Solutions domain decomposition closed spaces sound pressure level reduction |
| url | https://acoustics.ippt.pan.pl/index.php/aa/article/view/166 |
| work_keys_str_mv | AT luısgodinho 3dmultidomainmfsanalysisofsoundpressurelevelreductionbetweenconnectedenclosures AT fernandogbranco 3dmultidomainmfsanalysisofsoundpressurelevelreductionbetweenconnectedenclosures AT pauloamadomendes 3dmultidomainmfsanalysisofsoundpressurelevelreductionbetweenconnectedenclosures |