Assessment of the In Vitro Biological Activities of Schiff Base-Synthesized Copper Oxide Nanoparticles as an Anti-Diabetic, Anti-Alzheimer, and Anti-Cancer Agent

<b>Background/Objectives:</b> Numerous diseases such as diabetes, Alzheimer’s disease, and cancer have spread in the whole world, especially in the Arab world. Also, various applications of Schiff-base functionalized nanoparticles and copper oxide nanoparticles (CuO-NPs) such as therapeu...

Full description

Saved in:
Bibliographic Details
Main Authors: Abdulrahman A. Almehizia, Ahmed M. Naglah, Sadeem S. Aljafen, Ashraf S. Hassan, Wael M. Aboulthana
Format: Article
Language:English
Published: MDPI AG 2025-02-01
Series:Pharmaceutics
Subjects:
Online Access:https://www.mdpi.com/1999-4923/17/2/180
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:<b>Background/Objectives:</b> Numerous diseases such as diabetes, Alzheimer’s disease, and cancer have spread in the whole world, especially in the Arab world. Also, various applications of Schiff-base functionalized nanoparticles and copper oxide nanoparticles (CuO-NPs) such as therapeutic applications have been discovered. Thus, the current research highlights (i) the synthesis of copper oxide nanoparticles (CuO-NPs) produced with a Schiff base (SB) serving as a capping agent during their synthesis and (ii) assessment of the in vitro biological activities of Schiff base-synthesized copper oxide nanoparticles (SB-CuO-NPs) and a Schiff base (SB). <b>Methods:</b> SB-CuO-NPs were characterized using ultraviolet-visible (UV-Vis) spectroscopy, zeta potential, DLS analysis, and transmission electron microscope (TEM). It also focuses on assessing the in vitro biological applications and activities, including antioxidant, scavenging, anti-diabetic, anti-Alzheimer, anti-arthritic, anti-inflammatory, cytotoxic activities, and enzymes inhibitory potential, of Schiff base-synthesized copper oxide nanoparticles (SB-CuO-NPs) and a Schiff base (SB) using methods described in the literature. <b>Results:</b> The results of the biological activities of the SB-CuO-NPs were compared with those of the SB. The SB-CuO-NPs demonstrated superior in vitro biological activities when compared to the SB from which they were produced. <b>Conclusions:</b> The results of this investigation concluded that the CuO-NPs, synthesized with the SB serving as an alternative capping agent, exhibited enhanced biological efficacy relative to the original SB. In the future, the biological efficiency of SB-CuO-NPs against diabetes, Alzheimer’s, and cancer diseases will be assessed in experimental animals (in vivo).
ISSN:1999-4923