Enhanced genome editing with a Streptococcus equinus Cas9
Abstract A large number of SpCas9 orthologs has been computationally identified, but their genome editing potential remains largely unknown. In this study, a GFP-activation assay was used to screen a panel of 18 SpCas9 orthologs, ten of which demonstrated activity in human cells. Notably, these orth...
Saved in:
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2025-02-01
|
Series: | Communications Biology |
Online Access: | https://doi.org/10.1038/s42003-025-07593-z |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract A large number of SpCas9 orthologs has been computationally identified, but their genome editing potential remains largely unknown. In this study, a GFP-activation assay was used to screen a panel of 18 SpCas9 orthologs, ten of which demonstrated activity in human cells. Notably, these orthologs had a preference for purine-rich PAM sequences. Four of the tested orthologs displayed enhanced specificity compared to SpCas9. Of particular interest is SeqCas9, which recognizes a simple NNG PAM and displays activity and specificity comparable to SpCas9-HF1. In addition, SeqCas9 exhibits superior base editing efficiency compared to SpCas9-NG and SpCas9-NRRH at multiple endogenous loci. This research sheds light on the diversity of SpCas9 orthologs and their potential for specific and efficient genome editing, especially in cases involving base editing. |
---|---|
ISSN: | 2399-3642 |