Maresin 1 Inhibits TRPV1 in Temporomandibular Joint-Related Trigeminal Nociceptive Neurons and TMJ Inflammation-Induced Synaptic Plasticity in the Trigeminal Nucleus

In the trigeminal system, disruption of acute resolution processing may lead to uncontrolled inflammation and chronic pain associated with the temporomandibular joint (TMJ). Currently, there are no effective treatments for TMJ pain. Recently, it has been recognized that maresin 1, a newly identified...

Full description

Saved in:
Bibliographic Details
Main Author: Chul-Kyu Park
Format: Article
Language:English
Published: Wiley 2015-01-01
Series:Mediators of Inflammation
Online Access:http://dx.doi.org/10.1155/2015/275126
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850230534299451392
author Chul-Kyu Park
author_facet Chul-Kyu Park
author_sort Chul-Kyu Park
collection DOAJ
description In the trigeminal system, disruption of acute resolution processing may lead to uncontrolled inflammation and chronic pain associated with the temporomandibular joint (TMJ). Currently, there are no effective treatments for TMJ pain. Recently, it has been recognized that maresin 1, a newly identified macrophage-derived mediator of inflammation resolution, is a potent analgesic for somatic inflammatory pain without noticeable side effects in mice and a potent endogenous inhibitor of transient receptor potential vanilloid 1 (TRPV1) in the somatic system. However, the molecular mechanisms underlying the analgesic actions of maresin 1 on TMJ pain are unclear in the trigeminal system. Here, by performing TMJ injection of a retrograde labeling tracer DiI (a fluorescent dye), I showed that maresin 1 potently inhibits capsaicin-induced TRPV1 currents and neuronal activity via Gαi-coupled G-protein coupled receptors in DiI-labeled trigeminal nociceptive neurons. Further, maresin 1 blocked TRPV1 agonist-evoked increases in spontaneous excitatory postsynaptic current frequency and abolished TMJ inflammation-induced synaptic plasticity in the trigeminal nucleus. These results demonstrate the potent actions of maresin 1 in regulating TRPV1 in the trigeminal system. Thus, maresin 1 may serve as a novel endogenous inhibitor for treating TMJ-inflammatory pain in the orofacial region.
format Article
id doaj-art-28b02a940a714957ad35f1ebbfc49de2
institution OA Journals
issn 0962-9351
1466-1861
language English
publishDate 2015-01-01
publisher Wiley
record_format Article
series Mediators of Inflammation
spelling doaj-art-28b02a940a714957ad35f1ebbfc49de22025-08-20T02:03:51ZengWileyMediators of Inflammation0962-93511466-18612015-01-01201510.1155/2015/275126275126Maresin 1 Inhibits TRPV1 in Temporomandibular Joint-Related Trigeminal Nociceptive Neurons and TMJ Inflammation-Induced Synaptic Plasticity in the Trigeminal NucleusChul-Kyu Park0Department of Physiology, College of Medicine, Gachon University, Incheon 406-799, Republic of KoreaIn the trigeminal system, disruption of acute resolution processing may lead to uncontrolled inflammation and chronic pain associated with the temporomandibular joint (TMJ). Currently, there are no effective treatments for TMJ pain. Recently, it has been recognized that maresin 1, a newly identified macrophage-derived mediator of inflammation resolution, is a potent analgesic for somatic inflammatory pain without noticeable side effects in mice and a potent endogenous inhibitor of transient receptor potential vanilloid 1 (TRPV1) in the somatic system. However, the molecular mechanisms underlying the analgesic actions of maresin 1 on TMJ pain are unclear in the trigeminal system. Here, by performing TMJ injection of a retrograde labeling tracer DiI (a fluorescent dye), I showed that maresin 1 potently inhibits capsaicin-induced TRPV1 currents and neuronal activity via Gαi-coupled G-protein coupled receptors in DiI-labeled trigeminal nociceptive neurons. Further, maresin 1 blocked TRPV1 agonist-evoked increases in spontaneous excitatory postsynaptic current frequency and abolished TMJ inflammation-induced synaptic plasticity in the trigeminal nucleus. These results demonstrate the potent actions of maresin 1 in regulating TRPV1 in the trigeminal system. Thus, maresin 1 may serve as a novel endogenous inhibitor for treating TMJ-inflammatory pain in the orofacial region.http://dx.doi.org/10.1155/2015/275126
spellingShingle Chul-Kyu Park
Maresin 1 Inhibits TRPV1 in Temporomandibular Joint-Related Trigeminal Nociceptive Neurons and TMJ Inflammation-Induced Synaptic Plasticity in the Trigeminal Nucleus
Mediators of Inflammation
title Maresin 1 Inhibits TRPV1 in Temporomandibular Joint-Related Trigeminal Nociceptive Neurons and TMJ Inflammation-Induced Synaptic Plasticity in the Trigeminal Nucleus
title_full Maresin 1 Inhibits TRPV1 in Temporomandibular Joint-Related Trigeminal Nociceptive Neurons and TMJ Inflammation-Induced Synaptic Plasticity in the Trigeminal Nucleus
title_fullStr Maresin 1 Inhibits TRPV1 in Temporomandibular Joint-Related Trigeminal Nociceptive Neurons and TMJ Inflammation-Induced Synaptic Plasticity in the Trigeminal Nucleus
title_full_unstemmed Maresin 1 Inhibits TRPV1 in Temporomandibular Joint-Related Trigeminal Nociceptive Neurons and TMJ Inflammation-Induced Synaptic Plasticity in the Trigeminal Nucleus
title_short Maresin 1 Inhibits TRPV1 in Temporomandibular Joint-Related Trigeminal Nociceptive Neurons and TMJ Inflammation-Induced Synaptic Plasticity in the Trigeminal Nucleus
title_sort maresin 1 inhibits trpv1 in temporomandibular joint related trigeminal nociceptive neurons and tmj inflammation induced synaptic plasticity in the trigeminal nucleus
url http://dx.doi.org/10.1155/2015/275126
work_keys_str_mv AT chulkyupark maresin1inhibitstrpv1intemporomandibularjointrelatedtrigeminalnociceptiveneuronsandtmjinflammationinducedsynapticplasticityinthetrigeminalnucleus