Predicting the hub interactome of COVID-19 and oral squamous cell carcinoma: uncovering ALDH-mediated Wnt/β-catenin pathway activation via salivary inflammatory proteins

Abstract Understanding shared pathways and mechanisms involved in the pathogenesis of diseases like oral squamous cell carcinoma (OSCC) and COVID-19 could lead to the development of novel therapeutic strategies and diagnostic biomarkers. This study aims to predict the interactome of OSCC and COVID-1...

Full description

Saved in:
Bibliographic Details
Main Authors: Pradeep Kumar Yadalam, Deepavalli Arumuganainar, Prabhu Manickam Natarajan, Carlos M. Ardila
Format: Article
Language:English
Published: Nature Portfolio 2025-02-01
Series:Scientific Reports
Subjects:
Online Access:https://doi.org/10.1038/s41598-025-88819-2
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Understanding shared pathways and mechanisms involved in the pathogenesis of diseases like oral squamous cell carcinoma (OSCC) and COVID-19 could lead to the development of novel therapeutic strategies and diagnostic biomarkers. This study aims to predict the interactome of OSCC and COVID-19 based on salivary inflammatory proteins. Datasets for OSCC and COVID-19 were obtained from https://www.salivaryproteome.org/differential-expression and selected for differential gene expression analysis. Differential gene expression analysis was performed using log transformation and a fold change of two. Hub proteins were identified using Cytoscape and Cytohubba, and machine learning algorithms including naïve Bayes, neural networks, gradient boosting, and random forest were used to predict hub genes. Top hub genes identified included ALDH1A1, MT-CO2, SERPINC1, FGB, and TF. The random forest model achieved the highest accuracy (93%) and class accuracy (84%). The naive Bayes model had lower accuracy (63%) and class accuracy (66%), while the neural network model showed 55% accuracy and class accuracy, possibly due to data pre-processing issues. The gradient boosting model outperformed all models with an accuracy of 95% and class accuracy of 95%. Salivary proteomic interactome analysis revealed novel hub proteins as potential common biomarkers.
ISSN:2045-2322