Albufera Lagoon Ecological State Study Through the Temporal Analysis Tools Developed with PerúSAT-1 Satellite

The Albufera of Valencia (Spain) is a representative case of pressure on water quality, which caused the hypertrophic state of the lake to completely change the ecosystem that once featured crystal clear waters. PerúSAT-1 is the first Peruvian remote sensing satellite developed for natural disaster...

Full description

Saved in:
Bibliographic Details
Main Authors: Bárbara Alvado, Luis Saldarriaga, Xavier Sòria-Perpinyà, Juan Miguel Soria, Jorge Vicent, Antonio Ruíz-Verdú, Clara García-Martínez, Eduardo Vicente, Jesus Delegido
Format: Article
Language:English
Published: MDPI AG 2025-02-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/4/1103
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Albufera of Valencia (Spain) is a representative case of pressure on water quality, which caused the hypertrophic state of the lake to completely change the ecosystem that once featured crystal clear waters. PerúSAT-1 is the first Peruvian remote sensing satellite developed for natural disaster monitoring. Its high spatial resolution makes it an ideal sensor for capturing highly detailed products, which are useful for a variety of applications. The ability to change its acquisition geometry allows for an increase in revisit time. The main objective of this study is to assess the potential of PerúSAT-1′s multispectral images to develop multi-parameter algorithms to evaluate the ecological state of the Albufera lagoon. During five field campaigns, samples were taken, and measurements of ecological indicators (chlorophyll-a, Secchi disk depth, total suspended matter, and its organic-inorganic fraction) were made. All possible combinations of two bands were obtained and subsequently correlated with the biophysical variables by fitting a linear regression between the field data and the band combinations. The equations for estimating all the water variables result in the following R<sup>2</sup> values: 0.76 for chlorophyll-a (NRMSE: 16%), 0.75 for Secchi disk depth (NRMSE: 15%), 0.84 for total suspended matter (NRMSE: 11%), 0.76 for the inorganic fraction (NRMSE: 15%), and 0.87 for the organic fraction (NRMSE: 9%). Finally, the equations were applied to the Albufera lagoon images to obtain thematic maps for all variables.
ISSN:1424-8220