Design Concepts of Polycarbonate-Based Intervertebral Lumbar Cages: Finite Element Analysis and Compression Testing
This work explores the viability of 3D printed intervertebral lumbar cages based on biocompatible polycarbonate (PC-ISO® material). Several design concepts are proposed for the generation of patient-specific intervertebral lumbar cages. The 3D printed material achieved compressive yield strength of...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2016-01-01
|
| Series: | Applied Bionics and Biomechanics |
| Online Access: | http://dx.doi.org/10.1155/2016/7149182 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849307778705784832 |
|---|---|
| author | J. Obedt Figueroa-Cavazos Eduardo Flores-Villalba José A. Diaz-Elizondo Oscar Martínez-Romero Ciro A. Rodríguez Héctor R. Siller |
| author_facet | J. Obedt Figueroa-Cavazos Eduardo Flores-Villalba José A. Diaz-Elizondo Oscar Martínez-Romero Ciro A. Rodríguez Héctor R. Siller |
| author_sort | J. Obedt Figueroa-Cavazos |
| collection | DOAJ |
| description | This work explores the viability of 3D printed intervertebral lumbar cages based on biocompatible polycarbonate (PC-ISO® material). Several design concepts are proposed for the generation of patient-specific intervertebral lumbar cages. The 3D printed material achieved compressive yield strength of 55 MPa under a specific combination of manufacturing parameters. The literature recommends a reference load of 4,000 N for design of intervertebral lumbar cages. Under compression testing conditions, the proposed design concepts withstand between 7,500 and 10,000 N of load before showing yielding. Although some stress concentration regions were found during analysis, the overall viability of the proposed design concepts was validated. |
| format | Article |
| id | doaj-art-286fa26a09d1452db3aa2265182d3ac4 |
| institution | Kabale University |
| issn | 1176-2322 1754-2103 |
| language | English |
| publishDate | 2016-01-01 |
| publisher | Wiley |
| record_format | Article |
| series | Applied Bionics and Biomechanics |
| spelling | doaj-art-286fa26a09d1452db3aa2265182d3ac42025-08-20T03:54:38ZengWileyApplied Bionics and Biomechanics1176-23221754-21032016-01-01201610.1155/2016/71491827149182Design Concepts of Polycarbonate-Based Intervertebral Lumbar Cages: Finite Element Analysis and Compression TestingJ. Obedt Figueroa-Cavazos0Eduardo Flores-Villalba1José A. Diaz-Elizondo2Oscar Martínez-Romero3Ciro A. Rodríguez4Héctor R. Siller5Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, 64849 Monterrey, NL, MexicoTecnologico de Monterrey, Escuela de Ingeniería y Ciencias, 64849 Monterrey, NL, MexicoTecnologico de Monterrey, Escuela de Medicina, 64710 Monterrey, NL, MexicoTecnologico de Monterrey, Escuela de Ingeniería y Ciencias, 64849 Monterrey, NL, MexicoTecnologico de Monterrey, Escuela de Ingeniería y Ciencias, 64849 Monterrey, NL, MexicoTecnologico de Monterrey, Escuela de Ingeniería y Ciencias, 64849 Monterrey, NL, MexicoThis work explores the viability of 3D printed intervertebral lumbar cages based on biocompatible polycarbonate (PC-ISO® material). Several design concepts are proposed for the generation of patient-specific intervertebral lumbar cages. The 3D printed material achieved compressive yield strength of 55 MPa under a specific combination of manufacturing parameters. The literature recommends a reference load of 4,000 N for design of intervertebral lumbar cages. Under compression testing conditions, the proposed design concepts withstand between 7,500 and 10,000 N of load before showing yielding. Although some stress concentration regions were found during analysis, the overall viability of the proposed design concepts was validated.http://dx.doi.org/10.1155/2016/7149182 |
| spellingShingle | J. Obedt Figueroa-Cavazos Eduardo Flores-Villalba José A. Diaz-Elizondo Oscar Martínez-Romero Ciro A. Rodríguez Héctor R. Siller Design Concepts of Polycarbonate-Based Intervertebral Lumbar Cages: Finite Element Analysis and Compression Testing Applied Bionics and Biomechanics |
| title | Design Concepts of Polycarbonate-Based Intervertebral Lumbar Cages: Finite Element Analysis and Compression Testing |
| title_full | Design Concepts of Polycarbonate-Based Intervertebral Lumbar Cages: Finite Element Analysis and Compression Testing |
| title_fullStr | Design Concepts of Polycarbonate-Based Intervertebral Lumbar Cages: Finite Element Analysis and Compression Testing |
| title_full_unstemmed | Design Concepts of Polycarbonate-Based Intervertebral Lumbar Cages: Finite Element Analysis and Compression Testing |
| title_short | Design Concepts of Polycarbonate-Based Intervertebral Lumbar Cages: Finite Element Analysis and Compression Testing |
| title_sort | design concepts of polycarbonate based intervertebral lumbar cages finite element analysis and compression testing |
| url | http://dx.doi.org/10.1155/2016/7149182 |
| work_keys_str_mv | AT jobedtfigueroacavazos designconceptsofpolycarbonatebasedintervertebrallumbarcagesfiniteelementanalysisandcompressiontesting AT eduardofloresvillalba designconceptsofpolycarbonatebasedintervertebrallumbarcagesfiniteelementanalysisandcompressiontesting AT joseadiazelizondo designconceptsofpolycarbonatebasedintervertebrallumbarcagesfiniteelementanalysisandcompressiontesting AT oscarmartinezromero designconceptsofpolycarbonatebasedintervertebrallumbarcagesfiniteelementanalysisandcompressiontesting AT ciroarodriguez designconceptsofpolycarbonatebasedintervertebrallumbarcagesfiniteelementanalysisandcompressiontesting AT hectorrsiller designconceptsofpolycarbonatebasedintervertebrallumbarcagesfiniteelementanalysisandcompressiontesting |