Cu(II) and Ni(II) Interactions with the Terminally Blocked Hexapeptide Ac-Leu-Ala-His-Tyr-Asn-Lys-amide Model of Histone H2B (80–85)

The N- and C-terminal blocked hexapeptide Ac-Leu-Ala-His-Tyr-Asn-Lys-amide (LAHYNK) representing the 80–85 fragment of histone H2B was synthesized and its interactions with Cu(II) and Ni(II) ions were studied by potentiometric, UV-Vis, CD, EPR, and NMR spectroscopic techniques in solution. Our data...

Full description

Saved in:
Bibliographic Details
Main Authors: Katerina Panagiotou, Maria Panagopoulou, Tilemachos Karavelas, Vassiliki Dokorou, Andrew Hagarman, Jonathan Soffer, Reinhard Schweitzer-Stenner, Gerasimos Malandrinos, Nick Hadjiliadis
Format: Article
Language:English
Published: Wiley 2008-01-01
Series:Bioinorganic Chemistry and Applications
Online Access:http://dx.doi.org/10.1155/2008/257038
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The N- and C-terminal blocked hexapeptide Ac-Leu-Ala-His-Tyr-Asn-Lys-amide (LAHYNK) representing the 80–85 fragment of histone H2B was synthesized and its interactions with Cu(II) and Ni(II) ions were studied by potentiometric, UV-Vis, CD, EPR, and NMR spectroscopic techniques in solution. Our data reveal that the imidazole N(3) nitrogen atom is the primary ligating group for both metal ions. Sequential amide groups deprotonation and subsequent coordination to metal ions indicated an {Nimidazole,3Namide} coordination mode above pH∼9, in all cases. In the case of Cu(II)-peptide system, the almost exclusive formation of the predominant species CuL in neutral media accounting for almost 98% of the total metal ion concentration at pH 7.3 strongly indicates that at physiological pH values the sequence -LAHYNK- of histone H2B provides very efficient binding sites for metal ions. The imidazole pyrrole N(1) ionization (but not coordination) was also detected in species CuH-4L present in solution above pH∼11.
ISSN:1565-3633
1687-479X