Compactness in Wiener amalgams on locally compact groups

We study the compactness of bounded subsets in a Wiener amalgam whose local and global components are solid Banach function (BF) spaces on a locally compact group. Our main theorem provides a generalization of the corresponding results of Feichtinger. This paper paves the way for the study of compac...

Full description

Saved in:
Bibliographic Details
Main Author: S. S. Pandey
Format: Article
Language:English
Published: Wiley 2003-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/S0161171203212205
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832548937907568640
author S. S. Pandey
author_facet S. S. Pandey
author_sort S. S. Pandey
collection DOAJ
description We study the compactness of bounded subsets in a Wiener amalgam whose local and global components are solid Banach function (BF) spaces on a locally compact group. Our main theorem provides a generalization of the corresponding results of Feichtinger. This paper paves the way for the study of compact multiplier operators on general Wiener amalgams on the lines of Feichtinger.
format Article
id doaj-art-284e52d52b544814bfc3c1162b98b727
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 2003-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-284e52d52b544814bfc3c1162b98b7272025-02-03T06:12:39ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252003-01-012003553503351710.1155/S0161171203212205Compactness in Wiener amalgams on locally compact groupsS. S. Pandey0Department of Mathematics, Rani Durgawati University, Jabalpur, IndiaWe study the compactness of bounded subsets in a Wiener amalgam whose local and global components are solid Banach function (BF) spaces on a locally compact group. Our main theorem provides a generalization of the corresponding results of Feichtinger. This paper paves the way for the study of compact multiplier operators on general Wiener amalgams on the lines of Feichtinger.http://dx.doi.org/10.1155/S0161171203212205
spellingShingle S. S. Pandey
Compactness in Wiener amalgams on locally compact groups
International Journal of Mathematics and Mathematical Sciences
title Compactness in Wiener amalgams on locally compact groups
title_full Compactness in Wiener amalgams on locally compact groups
title_fullStr Compactness in Wiener amalgams on locally compact groups
title_full_unstemmed Compactness in Wiener amalgams on locally compact groups
title_short Compactness in Wiener amalgams on locally compact groups
title_sort compactness in wiener amalgams on locally compact groups
url http://dx.doi.org/10.1155/S0161171203212205
work_keys_str_mv AT sspandey compactnessinwieneramalgamsonlocallycompactgroups