Adaptive Optimal 𝑚-Stage Runge-Kutta Methods for Solving Reaction-Diffusion-Chemotaxis Systems

We present a class of numerical methods for the reaction-diffusion-chemotaxis system which is significant for biological and chemistry pattern formation problems. To solve reaction-diffusion-chemotaxis systems, efficient and reliable numerical algorithms are essential for pattern generations. Along...

Full description

Saved in:
Bibliographic Details
Main Author: Jui-Ling Yu
Format: Article
Language:English
Published: Wiley 2011-01-01
Series:Journal of Applied Mathematics
Online Access:http://dx.doi.org/10.1155/2011/389207
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present a class of numerical methods for the reaction-diffusion-chemotaxis system which is significant for biological and chemistry pattern formation problems. To solve reaction-diffusion-chemotaxis systems, efficient and reliable numerical algorithms are essential for pattern generations. Along with the implementation of the method of lines, implicit or semi-implicit schemes are typical time stepping solvers to reduce the effect on time step constrains due to the stability condition. However, these two schemes are usually difficult to employ. In this paper, we propose an adaptive optimal time stepping strategy for the explicit 𝑚-stage Runge-Kutta method to solve reaction-diffusion-chemotaxis systems. Instead of relying on empirical approaches to control the time step size, variable time step sizes are given explicitly. Yet, theorems about stability and convergence of the algorithm are provided in analyzing robustness and efficiency. Numerical experiment results on a testing problem and a real application problem are shown.
ISSN:1110-757X
1687-0042