Predicting lung aging using scRNA-Seq data.

Age prediction based on single cell RNA-Sequencing data (scRNA-Seq) can provide information for patients' susceptibility to various diseases and conditions. In addition, such analysis can be used to identify aging related genes and pathways. To enable age prediction based on scRNA-Seq data, we...

Full description

Saved in:
Bibliographic Details
Main Authors: Qi Song, Alex Singh, John E McDonough, Taylor S Adams, Robin Vos, Ruben De Man, Greg Myers, Laurens J Ceulemans, Bart M Vanaudenaerde, Wim A Wuyts, Xiting Yan, Jonas Schupp, James S Hagood, Naftali Kaminski, Ziv Bar-Joseph
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2024-12-01
Series:PLoS Computational Biology
Online Access:https://doi.org/10.1371/journal.pcbi.1012632
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832540306566807552
author Qi Song
Alex Singh
John E McDonough
Taylor S Adams
Robin Vos
Ruben De Man
Greg Myers
Laurens J Ceulemans
Bart M Vanaudenaerde
Wim A Wuyts
Xiting Yan
Jonas Schupp
James S Hagood
Naftali Kaminski
Ziv Bar-Joseph
author_facet Qi Song
Alex Singh
John E McDonough
Taylor S Adams
Robin Vos
Ruben De Man
Greg Myers
Laurens J Ceulemans
Bart M Vanaudenaerde
Wim A Wuyts
Xiting Yan
Jonas Schupp
James S Hagood
Naftali Kaminski
Ziv Bar-Joseph
author_sort Qi Song
collection DOAJ
description Age prediction based on single cell RNA-Sequencing data (scRNA-Seq) can provide information for patients' susceptibility to various diseases and conditions. In addition, such analysis can be used to identify aging related genes and pathways. To enable age prediction based on scRNA-Seq data, we developed PolyEN, a new regression model which learns continuous representation for expression over time. These representations are then used by PolyEN to integrate genes to predict an age. Existing and new lung aging data we profiled demonstrated PolyEN's improved performance over existing methods for age prediction. Our results identified lung epithelial cells as the most significant predictors for non-smokers while lung endothelial cells led to the best chronological age prediction results for smokers.
format Article
id doaj-art-280f2023590e49f3a592ecc53710a21a
institution Kabale University
issn 1553-734X
1553-7358
language English
publishDate 2024-12-01
publisher Public Library of Science (PLoS)
record_format Article
series PLoS Computational Biology
spelling doaj-art-280f2023590e49f3a592ecc53710a21a2025-02-05T05:30:39ZengPublic Library of Science (PLoS)PLoS Computational Biology1553-734X1553-73582024-12-012012e101263210.1371/journal.pcbi.1012632Predicting lung aging using scRNA-Seq data.Qi SongAlex SinghJohn E McDonoughTaylor S AdamsRobin VosRuben De ManGreg MyersLaurens J CeulemansBart M VanaudenaerdeWim A WuytsXiting YanJonas SchuppJames S HagoodNaftali KaminskiZiv Bar-JosephAge prediction based on single cell RNA-Sequencing data (scRNA-Seq) can provide information for patients' susceptibility to various diseases and conditions. In addition, such analysis can be used to identify aging related genes and pathways. To enable age prediction based on scRNA-Seq data, we developed PolyEN, a new regression model which learns continuous representation for expression over time. These representations are then used by PolyEN to integrate genes to predict an age. Existing and new lung aging data we profiled demonstrated PolyEN's improved performance over existing methods for age prediction. Our results identified lung epithelial cells as the most significant predictors for non-smokers while lung endothelial cells led to the best chronological age prediction results for smokers.https://doi.org/10.1371/journal.pcbi.1012632
spellingShingle Qi Song
Alex Singh
John E McDonough
Taylor S Adams
Robin Vos
Ruben De Man
Greg Myers
Laurens J Ceulemans
Bart M Vanaudenaerde
Wim A Wuyts
Xiting Yan
Jonas Schupp
James S Hagood
Naftali Kaminski
Ziv Bar-Joseph
Predicting lung aging using scRNA-Seq data.
PLoS Computational Biology
title Predicting lung aging using scRNA-Seq data.
title_full Predicting lung aging using scRNA-Seq data.
title_fullStr Predicting lung aging using scRNA-Seq data.
title_full_unstemmed Predicting lung aging using scRNA-Seq data.
title_short Predicting lung aging using scRNA-Seq data.
title_sort predicting lung aging using scrna seq data
url https://doi.org/10.1371/journal.pcbi.1012632
work_keys_str_mv AT qisong predictinglungagingusingscrnaseqdata
AT alexsingh predictinglungagingusingscrnaseqdata
AT johnemcdonough predictinglungagingusingscrnaseqdata
AT taylorsadams predictinglungagingusingscrnaseqdata
AT robinvos predictinglungagingusingscrnaseqdata
AT rubendeman predictinglungagingusingscrnaseqdata
AT gregmyers predictinglungagingusingscrnaseqdata
AT laurensjceulemans predictinglungagingusingscrnaseqdata
AT bartmvanaudenaerde predictinglungagingusingscrnaseqdata
AT wimawuyts predictinglungagingusingscrnaseqdata
AT xitingyan predictinglungagingusingscrnaseqdata
AT jonasschupp predictinglungagingusingscrnaseqdata
AT jamesshagood predictinglungagingusingscrnaseqdata
AT naftalikaminski predictinglungagingusingscrnaseqdata
AT zivbarjoseph predictinglungagingusingscrnaseqdata