A Trajectory Tracking Control Method for 6 DoF UUV Based on Event Triggering Mechanism

Trajectory tracking control refers to the movement of an unmanned underwater vehicle (UUV) along a desired trajectory, which is a critical technology for the underwater tasks of UUVs. However, in actual scenarios, the reaction torque of propellers induces roll motion in UUVs, and the communication r...

Full description

Saved in:
Bibliographic Details
Main Authors: Yakang Ju, Wenyu Cai, Meiyan Zhang, Hao Chen
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Journal of Marine Science and Engineering
Subjects:
Online Access:https://www.mdpi.com/2077-1312/13/5/879
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Trajectory tracking control refers to the movement of an unmanned underwater vehicle (UUV) along a desired trajectory, which is a critical technology for the underwater tasks of UUVs. However, in actual scenarios, the reaction torque of propellers induces roll motion in UUVs, and the communication resource and computational resource of UUVs are limited, which affects the trajectory tracking performance of UUVs severely. Hence, this paper introduces an event triggering mechanism to design the double-loop integrated sliding mode control (EDLISMC), which is used for the trajectory tracking control of UUVs. This method designs the kinematic model and dynamic model of 6 degree of freedom (DoF) UUVs under the influence of reaction torque. Then, this method derives the dual loop integral sliding mode controller and designs the event triggering mechanism based on the relative threshold to reduce unnecessary control signals and improve the control efficiency of UUVs. In addition, this method uses a positive lower bound method to verify that the proposed event triggering mechanism does not have Zeno behavior and adopts the Lyapunov theorem to analyze the stability of EDLISMC. Finally, this paper conducts simulations on the simulink component of MATLAB. The relevant simulation proves that the proposed method can complete the trajectory tracking control of UUVs under the influence of reaction torque and it is superior to other methods in terms of resource consumption.
ISSN:2077-1312