DOA Estimation for Highly Correlated and Coherent Multipath Signals with Ultralow SNRs

In a typical multipath propagation environment, there exists a strong direct path signal accompanying with several weak multipath signals. Due to the strong direct path interference and other masking effects, the Direction-of-Arrival (DOA) of a weak multipath signal is hard to be estimated. In this...

Full description

Saved in:
Bibliographic Details
Main Authors: Li Cheng, Yang Li, Lianying Zou, Yong Qin
Format: Article
Language:English
Published: Wiley 2019-01-01
Series:International Journal of Antennas and Propagation
Online Access:http://dx.doi.org/10.1155/2019/2837315
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In a typical multipath propagation environment, there exists a strong direct path signal accompanying with several weak multipath signals. Due to the strong direct path interference and other masking effects, the Direction-of-Arrival (DOA) of a weak multipath signal is hard to be estimated. In this paper, a novel method is proposed to estimate the DOA of multipath signals with ultralow signal-to-noise ratio (SNR). The main idea is to increase the SNR and signal-to-interference ratio (SIR) of the desired multipath signal in time-delay domain before DOA estimation processing. Firstly, the cross-correlation functions of the direct path signal and the received array signal are calculated. Then, they are combined and constructed to an enhanced array signal. Under certain conditions, the SNR and SIR of the desired signal can be significantly increased. Finally, the DOAs of multipath signals can be estimated by conventional technologies, and the associated time delays can be measured on the DOA-time-shift map. The SNR and SIR gains of the desired signal are analyzed theoretically, and theoretical analysis also indicates that the Cramer–Rao bound can be reduced. Simulation examples are presented to verify the advantages of the proposed method.
ISSN:1687-5869
1687-5877