The Impact of <i>OsERF34</i> on Rice Grain-Processing Traits and Appearance Quality
The head rice rate, defined as the proportion of milled grains retaining at least three-quarters of their original length, has become a limiting factor that restricts the improvement of rice quality in China in recent years. Here, we characterized the role of ETHYLENE RESPONSIVE FACTOR34 (OsERF34),...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-05-01
|
| Series: | Plants |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2223-7747/14/11/1633 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The head rice rate, defined as the proportion of milled grains retaining at least three-quarters of their original length, has become a limiting factor that restricts the improvement of rice quality in China in recent years. Here, we characterized the role of ETHYLENE RESPONSIVE FACTOR34 (OsERF34), an APETALA2 (AP2/ERF) family TF, in the grain morphology, physiochemical properties, and processing quality of rice. Through CRISPR/Cas9-mediated knockout (<i>Oserf34</i>) and overexpression (OsERF34-OE) in the japonica cultivar ZH11, we demonstrate that <i>OsERF34</i> exerts dose-dependent effects on grain morphology and processing traits. <i>Oserf34</i> mutants exhibited significantly elevated chalkiness levels, with a 52.0% increase in percentage of grains with chalkiness(PGWC) and a 65.4% enhancement in chalkiness degree, with disordered and enlarged starch granules, reduced amylose content and skewed chain-length distribution (A/B1 chains increased but B2/B3 chains decreased), and displayed heightened starch solubility and swelling power but diminished milling resistance (shear hardness having fallen by 12.7–16.1% and compression hardness having fallen by 11.2–16.4%), culminating in doubled breakage rates and lower head rice rate (decreased by 6.7–9.0%) during processing. Strikingly, both mutants and OE lines showed analogous grain narrowing, yet the processing quality diverged. Mutants suffered structural fragility, while the OE lines enhanced mechanical robustness (compression hardness increased by 11.4–12.1%). The OsERF34-OE lines achieved 6.5–7.1% higher head rice rates. Our work positions <i>OsERF34</i> as a dual-function regulator that governs grain morphology, regulating appearance and processing quality. These insights suggest that an overexpression of <i>OsERF34</i> could improve processing efficiency, potentially laying a foundation for precision breeding. |
|---|---|
| ISSN: | 2223-7747 |