Spatio-Temporal Variations of Rainstorms and Pluvial Floods and Impact Assessment on Cultural Tourism Clusters during Flood Seasons in Shanghai

With the acceleration of climate change and urbanization in recent years, extreme rainstorms and urban flooding have increasingly threatened urban safety. Their impact on cultural, commercial, and tourism industries is widespread and significant, often leading to traffic paralysis, closure of touris...

Full description

Saved in:
Bibliographic Details
Main Authors: Shen Huanhuan, Hu Hengzhi, Xin Chen, Wen Jiahong, Yang Yulu
Format: Article
Language:zho
Published: Editorial Committee of Tropical Geography 2025-04-01
Series:Redai dili
Subjects:
Online Access:https://www.rddl.com.cn/CN/10.13284/j.cnki.rddl.20240806
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:With the acceleration of climate change and urbanization in recent years, extreme rainstorms and urban flooding have increasingly threatened urban safety. Their impact on cultural, commercial, and tourism industries is widespread and significant, often leading to traffic paralysis, closure of tourist attractions, business shutdowns, and passenger stranding. In severe cases, this can endanger personal safety and result in significant economic losses. Shanghai, a representative coastal tourist city in China, is highly prone to rainstorm-induced flooding events from June to October each year due to the Meiyu front, extreme rainstorms, and typhoons. Conducting flood inundation simulations in Shanghai during the flood season is essential to identify high-impact urban flood areas and evaluate flood effects on densely populated cultural, commercial, and tourism hubs. This study used daily rainfall data from Shanghai between 1990 and 2020 to construct nine rainstorm scenarios based on three flood season periods (Meiyu, midsummer, and autumn) and three rainfall thresholds (maximum, 99th, and 95th percentiles). Using the SCS-CN and Mike21 hydrodynamic models for urban rainstorm flood simulations, a fuzzy comprehensive evaluation index system was developed based on a combination of Analytic Hierarchy Process(AHP) and Entropy Weighting Method (EWM) to assess the impact of flooding on Shanghai's cultural and tourism cluster areas. Results indicate the following: (1) Shanghai experiences the highest impact from rainstorm-induced flooding in the midsummer period. In the 95th percentile scenario, suburban areas experience minor flooding, whereas in the maximum value scenario, central urban areas experience a significant increase in flooding impact. (2) Control rules effectively improved the rationality and adaptability of the flood impact evaluation system. Resident and transient populations are key factors in evaluating flood impact. The flood impacts in Shanghai's cultural and tourism clusters showed significant spatial and temporal gradient characteristics, with medium-to-high- and high-impact areas primarily concentrated in the central urban cultural and tourism clusters. (3) Midsummer had the largest medium-to-high and high-impact zones, reaching 3.1 km² (8.79% of the total area), followed by the Meiyu period, whereas the autumn period has the smallest impact. (4) During midsummer, the largest proportion of high-impact areas was found in street- and road-type clusters, followed by waterfront leisure and comprehensive cultural tourism clusters, with areas accounting for 27.52%, 8.30%, and 6.44%, respectively. Cultural and tourism clusters should strengthen early warning, regulation, and preventive measures based on seasonal variations, especially during midsummer, when effective countermeasures must be implemented to reduce flooding impacts on visitor experience and regional safety. This study provides valuable insights for urban flood forecasting, early warning, and emergency response, as well as recommendations for sustainable development of the urban cultural, commercial, and tourism industries.
ISSN:1001-5221