Symbol-Pair Distances of a Class of Repeated-Root Constacyclic Codes of Length <i>np<sup>s</sup></i> over <inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="double-struck">F</mi><msup><mi>p</mi><mi>m</mi></msup></msub></mrow></semantics></math></inline-formula> and over <inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="double-struck">F</mi><msup><mi>p</mi><mi>m</mi></msup></msub><mo>+</mo><mi>u</mi><msub><mi mathvariant="double-struck">F</mi><msup><mi>p</mi><mi>m</mi></msup></msub></mrow></semantics></math></inline-formula>

Symbol-pair codes are a class of block codes with symbol-pair metrics designed to protect against pair errors that may occur in high-density data storage systems. Maximum distance separable (MDS) symbol-pair codes are optimal in the sense that they can attain the highest pair-error correctability wi...

Full description

Saved in:
Bibliographic Details
Main Authors: Wei Zhao, Weixian Li, Hui Chen
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/14/5/327
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Symbol-pair codes are a class of block codes with symbol-pair metrics designed to protect against pair errors that may occur in high-density data storage systems. Maximum distance separable (MDS) symbol-pair codes are optimal in the sense that they can attain the highest pair-error correctability within the same code length and code size. Constructing MDS symbol-pair codes is one of the main topics in symbol-pair code research. In this paper, we investigate and characterize the symbol-pair distances of constacyclic codes of arbitrary lengths over finite fields and finite chain rings. Using the characterization of the symbol-pair distance, we present three new classes of MDS symbol-pair constacyclic codes that exhibit large minimum distances.
ISSN:2075-1680