Systematic Security Analysis of Sensors and Controls in PV Inverters: Threat Validation and Countermeasures
As renewable energy sources (RES) continue to expand and the use of power inverters has surged, inverters have become crucial for converting direct current (DC) from RES into alternating current (AC) for the grid, and their security is vital for maintaining stable grid operations. This paper investi...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-02-01
|
| Series: | Sensors |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1424-8220/25/5/1493 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | As renewable energy sources (RES) continue to expand and the use of power inverters has surged, inverters have become crucial for converting direct current (DC) from RES into alternating current (AC) for the grid, and their security is vital for maintaining stable grid operations. This paper investigates the security vulnerabilities of photovoltaic (PV) inverters, specifically focusing on their internal sensors, which are critical for reliable power conversion. It is found that both current and voltage sensors are susceptible to intentional electromagnetic interference (IEMI) at frequencies of 1 GHz or higher, even with electromagnetic compatibility (EMC) protections in place. These vulnerabilities can lead to incorrect sensor readings, disrupting control algorithms. We propose an IEMI attack that results in three potential outcomes: Denial of Service (DoS), physical damage to the inverter, and power output reduction. These effects were demonstrated on six commercial single-phase and three-phase PV inverters, as well as in a real-world microgrid, by emitting IEMI signals from 100 to 150 cm away with up to 20 W of power. This study highlights the growing security risks of power electronics in RES, which represent an emerging target for cyber-physical attacks in future RES-dominated grids. Finally, to cope with such threats, three detection methods that are adaptable to diverse threat scenarios are proposed and their advantages and disadvantages are discussed. |
|---|---|
| ISSN: | 1424-8220 |