Global stability and uniform persistence of the reaction-convection-diffusion cholera epidemic model

We study the global stability issue of the reaction-convection-diffusion cholera epidemic PDE model and show that the basic reproduction number serves as a threshold parameter that predicts whether cholera will persist or become globally extinct. Specifically, when the basic reproduction number is b...

Full description

Saved in:
Bibliographic Details
Main Authors: Kazuo Yamazaki, Xueying Wang
Format: Article
Language:English
Published: AIMS Press 2017-03-01
Series:Mathematical Biosciences and Engineering
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/mbe.2017033
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832590031701671936
author Kazuo Yamazaki
Xueying Wang
author_facet Kazuo Yamazaki
Xueying Wang
author_sort Kazuo Yamazaki
collection DOAJ
description We study the global stability issue of the reaction-convection-diffusion cholera epidemic PDE model and show that the basic reproduction number serves as a threshold parameter that predicts whether cholera will persist or become globally extinct. Specifically, when the basic reproduction number is beneath one, we show that the disease-free-equilibrium is globally attractive. On the other hand, when the basic reproduction number exceeds one, if the infectious hosts or the concentration of bacteria in the contaminated water are not initially identically zero, we prove the uniform persistence result and that there exists at least one positive steady state.
format Article
id doaj-art-2719d7b716f343d7b27071df78a01ca9
institution Kabale University
issn 1551-0018
language English
publishDate 2017-03-01
publisher AIMS Press
record_format Article
series Mathematical Biosciences and Engineering
spelling doaj-art-2719d7b716f343d7b27071df78a01ca92025-01-24T02:39:38ZengAIMS PressMathematical Biosciences and Engineering1551-00182017-03-0114255957910.3934/mbe.2017033Global stability and uniform persistence of the reaction-convection-diffusion cholera epidemic modelKazuo Yamazaki0Xueying Wang1Department of Mathematics, University of Rochester, Rochester, NY 14627, USADepartment of Mathematics and Statistics, Washington State University, Pullman, WA 99164-3113, USAWe study the global stability issue of the reaction-convection-diffusion cholera epidemic PDE model and show that the basic reproduction number serves as a threshold parameter that predicts whether cholera will persist or become globally extinct. Specifically, when the basic reproduction number is beneath one, we show that the disease-free-equilibrium is globally attractive. On the other hand, when the basic reproduction number exceeds one, if the infectious hosts or the concentration of bacteria in the contaminated water are not initially identically zero, we prove the uniform persistence result and that there exists at least one positive steady state.https://www.aimspress.com/article/doi/10.3934/mbe.2017033basic reproduction numbercholera dynamicspersistenceprincipal eigenvaluesstability
spellingShingle Kazuo Yamazaki
Xueying Wang
Global stability and uniform persistence of the reaction-convection-diffusion cholera epidemic model
Mathematical Biosciences and Engineering
basic reproduction number
cholera dynamics
persistence
principal eigenvalues
stability
title Global stability and uniform persistence of the reaction-convection-diffusion cholera epidemic model
title_full Global stability and uniform persistence of the reaction-convection-diffusion cholera epidemic model
title_fullStr Global stability and uniform persistence of the reaction-convection-diffusion cholera epidemic model
title_full_unstemmed Global stability and uniform persistence of the reaction-convection-diffusion cholera epidemic model
title_short Global stability and uniform persistence of the reaction-convection-diffusion cholera epidemic model
title_sort global stability and uniform persistence of the reaction convection diffusion cholera epidemic model
topic basic reproduction number
cholera dynamics
persistence
principal eigenvalues
stability
url https://www.aimspress.com/article/doi/10.3934/mbe.2017033
work_keys_str_mv AT kazuoyamazaki globalstabilityanduniformpersistenceofthereactionconvectiondiffusioncholeraepidemicmodel
AT xueyingwang globalstabilityanduniformpersistenceofthereactionconvectiondiffusioncholeraepidemicmodel