Global stability and uniform persistence of the reaction-convection-diffusion cholera epidemic model

We study the global stability issue of the reaction-convection-diffusion cholera epidemic PDE model and show that the basic reproduction number serves as a threshold parameter that predicts whether cholera will persist or become globally extinct. Specifically, when the basic reproduction number is b...

Full description

Saved in:
Bibliographic Details
Main Authors: Kazuo Yamazaki, Xueying Wang
Format: Article
Language:English
Published: AIMS Press 2017-03-01
Series:Mathematical Biosciences and Engineering
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/mbe.2017033
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study the global stability issue of the reaction-convection-diffusion cholera epidemic PDE model and show that the basic reproduction number serves as a threshold parameter that predicts whether cholera will persist or become globally extinct. Specifically, when the basic reproduction number is beneath one, we show that the disease-free-equilibrium is globally attractive. On the other hand, when the basic reproduction number exceeds one, if the infectious hosts or the concentration of bacteria in the contaminated water are not initially identically zero, we prove the uniform persistence result and that there exists at least one positive steady state.
ISSN:1551-0018