SAW: an efficient and accurate data analysis workflow for Stereo-seq spatial transcriptomics

The basic analysis steps of spatial transcriptomics require obtaining gene expression information from both space and cells. The existing tools for these analyses incur performance issues when dealing with large datasets. These issues involve computationally intensive spatial localizati...

Full description

Saved in:
Bibliographic Details
Main Authors: Chun Gong, Shengkang Li, Leying Wang, Fuxiang Zhao, Shuangsang Fang, Dong Yuan, Zijian Zhao, Qiqi He, Mei Li, Weiqing Liu, Zhaoxun Li, Hongqing Xie, Sha Liao, Ao Chen, Yong Zhang, Yuxiang Li, Xun Xu
Format: Article
Language:English
Published: GigaScience Press 2024-02-01
Series:GigaByte
Online Access:https://gigabytejournal.com/articles/111
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849715998479876096
author Chun Gong
Shengkang Li
Leying Wang
Fuxiang Zhao
Shuangsang Fang
Dong Yuan
Zijian Zhao
Qiqi He
Mei Li
Weiqing Liu
Zhaoxun Li
Hongqing Xie
Sha Liao
Ao Chen
Yong Zhang
Yuxiang Li
Xun Xu
author_facet Chun Gong
Shengkang Li
Leying Wang
Fuxiang Zhao
Shuangsang Fang
Dong Yuan
Zijian Zhao
Qiqi He
Mei Li
Weiqing Liu
Zhaoxun Li
Hongqing Xie
Sha Liao
Ao Chen
Yong Zhang
Yuxiang Li
Xun Xu
author_sort Chun Gong
collection DOAJ
description The basic analysis steps of spatial transcriptomics require obtaining gene expression information from both space and cells. The existing tools for these analyses incur performance issues when dealing with large datasets. These issues involve computationally intensive spatial localization, RNA genome alignment, and excessive memory usage in large chip scenarios. These problems affect the applicability and efficiency of the analysis. Here, a high-performance and accurate spatial transcriptomics data analysis workflow, called Stereo-seq Analysis Workflow (SAW), was developed for the Stereo-seq technology developed at BGI. SAW includes mRNA spatial position reconstruction, genome alignment, gene expression matrix generation, and clustering. The workflow outputs files in a universal format for subsequent personalized analysis. The execution time for the entire analysis is ∼148 min with 1 GB reads 1 × 1 cm chip test data, 1.8 times faster than with an unoptimized workflow.
format Article
id doaj-art-26cefe0a254d499eae1deed26e7f694e
institution DOAJ
issn 2709-4715
language English
publishDate 2024-02-01
publisher GigaScience Press
record_format Article
series GigaByte
spelling doaj-art-26cefe0a254d499eae1deed26e7f694e2025-08-20T03:13:10ZengGigaScience PressGigaByte2709-47152024-02-0110.46471/gigabyte.111SAW: an efficient and accurate data analysis workflow for Stereo-seq spatial transcriptomicsChun Gong 0https://orcid.org/0009-0004-0902-0654Shengkang Li 1Leying Wang 2Fuxiang Zhao 3Shuangsang Fang 4https://orcid.org/0000-0002-4126-0074Dong Yuan 5Zijian Zhao 6Qiqi He 7Mei Li 8https://orcid.org/0000-0003-3310-2911Weiqing Liu 9Zhaoxun Li 10Hongqing Xie 11Sha Liao 12Ao Chen 13https://orcid.org/0000-0002-9699-8340Yong Zhang 14Yuxiang Li 15Xun Xu 16https://orcid.org/0000-0002-5338-5173BGI-Shenzhen, Shenzhen, Guangdong, ChinaBGI-Shenzhen, Shenzhen, Guangdong, ChinaBGI-Shenzhen, Shenzhen, Guangdong, ChinaBGI-Shenzhen, Shenzhen, Guangdong, ChinaBGI-Shenzhen, Shenzhen, Guangdong, China, BGI-Beijing, Beijing, 102601, ChinaBGI-Shenzhen, Shenzhen, Guangdong, ChinaBGI-Shenzhen, Shenzhen, Guangdong, ChinaBGI-Shenzhen, Shenzhen, Guangdong, ChinaBGI-Shenzhen, Shenzhen, Guangdong, ChinaBGI-Shenzhen, Shenzhen, Guangdong, ChinaBGI-Shenzhen, Shenzhen, Guangdong, ChinaBGI-Shenzhen, Shenzhen, Guangdong, ChinaBGI-Shenzhen, Shenzhen, Guangdong, ChinaBGI-Shenzhen, Shenzhen, Guangdong, ChinaBGI-Shenzhen, Shenzhen, Guangdong, ChinaBGI-Shenzhen, Shenzhen, Guangdong, ChinaBGI-Wuhan, Wuhan, Hubei, China The basic analysis steps of spatial transcriptomics require obtaining gene expression information from both space and cells. The existing tools for these analyses incur performance issues when dealing with large datasets. These issues involve computationally intensive spatial localization, RNA genome alignment, and excessive memory usage in large chip scenarios. These problems affect the applicability and efficiency of the analysis. Here, a high-performance and accurate spatial transcriptomics data analysis workflow, called Stereo-seq Analysis Workflow (SAW), was developed for the Stereo-seq technology developed at BGI. SAW includes mRNA spatial position reconstruction, genome alignment, gene expression matrix generation, and clustering. The workflow outputs files in a universal format for subsequent personalized analysis. The execution time for the entire analysis is ∼148 min with 1 GB reads 1 × 1 cm chip test data, 1.8 times faster than with an unoptimized workflow. https://gigabytejournal.com/articles/111
spellingShingle Chun Gong
Shengkang Li
Leying Wang
Fuxiang Zhao
Shuangsang Fang
Dong Yuan
Zijian Zhao
Qiqi He
Mei Li
Weiqing Liu
Zhaoxun Li
Hongqing Xie
Sha Liao
Ao Chen
Yong Zhang
Yuxiang Li
Xun Xu
SAW: an efficient and accurate data analysis workflow for Stereo-seq spatial transcriptomics
GigaByte
title SAW: an efficient and accurate data analysis workflow for Stereo-seq spatial transcriptomics
title_full SAW: an efficient and accurate data analysis workflow for Stereo-seq spatial transcriptomics
title_fullStr SAW: an efficient and accurate data analysis workflow for Stereo-seq spatial transcriptomics
title_full_unstemmed SAW: an efficient and accurate data analysis workflow for Stereo-seq spatial transcriptomics
title_short SAW: an efficient and accurate data analysis workflow for Stereo-seq spatial transcriptomics
title_sort saw an efficient and accurate data analysis workflow for stereo seq spatial transcriptomics
url https://gigabytejournal.com/articles/111
work_keys_str_mv AT chungong sawanefficientandaccuratedataanalysisworkflowforstereoseqspatialtranscriptomics
AT shengkangli sawanefficientandaccuratedataanalysisworkflowforstereoseqspatialtranscriptomics
AT leyingwang sawanefficientandaccuratedataanalysisworkflowforstereoseqspatialtranscriptomics
AT fuxiangzhao sawanefficientandaccuratedataanalysisworkflowforstereoseqspatialtranscriptomics
AT shuangsangfang sawanefficientandaccuratedataanalysisworkflowforstereoseqspatialtranscriptomics
AT dongyuan sawanefficientandaccuratedataanalysisworkflowforstereoseqspatialtranscriptomics
AT zijianzhao sawanefficientandaccuratedataanalysisworkflowforstereoseqspatialtranscriptomics
AT qiqihe sawanefficientandaccuratedataanalysisworkflowforstereoseqspatialtranscriptomics
AT meili sawanefficientandaccuratedataanalysisworkflowforstereoseqspatialtranscriptomics
AT weiqingliu sawanefficientandaccuratedataanalysisworkflowforstereoseqspatialtranscriptomics
AT zhaoxunli sawanefficientandaccuratedataanalysisworkflowforstereoseqspatialtranscriptomics
AT hongqingxie sawanefficientandaccuratedataanalysisworkflowforstereoseqspatialtranscriptomics
AT shaliao sawanefficientandaccuratedataanalysisworkflowforstereoseqspatialtranscriptomics
AT aochen sawanefficientandaccuratedataanalysisworkflowforstereoseqspatialtranscriptomics
AT yongzhang sawanefficientandaccuratedataanalysisworkflowforstereoseqspatialtranscriptomics
AT yuxiangli sawanefficientandaccuratedataanalysisworkflowforstereoseqspatialtranscriptomics
AT xunxu sawanefficientandaccuratedataanalysisworkflowforstereoseqspatialtranscriptomics