Quantum key distribution implemented with d-level time-bin entangled photons
Abstract High-dimensional photon states (qudits) are pivotal to enhance the information capacity, noise robustness, and data rates of quantum communications. Time-bin entangled qudits are promising candidates for implementing high-dimensional quantum communications over optical fiber networks with p...
Saved in:
Main Authors: | , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2025-01-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-024-55345-0 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1841559197274079232 |
---|---|
author | Hao Yu Stefania Sciara Mario Chemnitz Nicola Montaut Benjamin Crockett Bennet Fischer Robin Helsten Benjamin Wetzel Thorsten A. Goebel Ria G. Krämer Brent E. Little Sai T. Chu Stefan Nolte Zhiming Wang José Azaña William J. Munro David J. Moss Roberto Morandotti |
author_facet | Hao Yu Stefania Sciara Mario Chemnitz Nicola Montaut Benjamin Crockett Bennet Fischer Robin Helsten Benjamin Wetzel Thorsten A. Goebel Ria G. Krämer Brent E. Little Sai T. Chu Stefan Nolte Zhiming Wang José Azaña William J. Munro David J. Moss Roberto Morandotti |
author_sort | Hao Yu |
collection | DOAJ |
description | Abstract High-dimensional photon states (qudits) are pivotal to enhance the information capacity, noise robustness, and data rates of quantum communications. Time-bin entangled qudits are promising candidates for implementing high-dimensional quantum communications over optical fiber networks with processing rates approaching those of classical telecommunications. However, their use is hindered by phase instability, timing inaccuracy, and low scalability of interferometric schemes needed for time-bin processing. As well, increasing the number of time bins per photon state typically requires decreasing the repetition rate of the system, affecting in turn the effective qudit rates. Here, we demonstrate a fiber-pigtailed, integrated photonic platform enabling the generation and processing of picosecond-spaced time-bin entangled qudits in the telecommunication C band via an on-chip interferometry system. We experimentally demonstrate the Bennett-Brassard-Mermin 1992 quantum key distribution protocol with time-bin entangled qudits and extend it over a 60 km-long optical fiber link, by showing dimensionality scaling without sacrificing the repetition rate. Our approach enables the manipulation of time-bin entangled qudits at processing speeds typical of standard telecommunications (10 s of GHz) with high quantum information capacity per single frequency channel, representing an important step towards an efficient implementation of high-data rate quantum communications in standard, multi-user optical fiber networks. |
format | Article |
id | doaj-art-26b3ed88092f41aeb635907a5c363d90 |
institution | Kabale University |
issn | 2041-1723 |
language | English |
publishDate | 2025-01-01 |
publisher | Nature Portfolio |
record_format | Article |
series | Nature Communications |
spelling | doaj-art-26b3ed88092f41aeb635907a5c363d902025-01-05T12:39:09ZengNature PortfolioNature Communications2041-17232025-01-0116111010.1038/s41467-024-55345-0Quantum key distribution implemented with d-level time-bin entangled photonsHao Yu0Stefania Sciara1Mario Chemnitz2Nicola Montaut3Benjamin Crockett4Bennet Fischer5Robin Helsten6Benjamin Wetzel7Thorsten A. Goebel8Ria G. Krämer9Brent E. Little10Sai T. Chu11Stefan Nolte12Zhiming Wang13José Azaña14William J. Munro15David J. Moss16Roberto Morandotti17Institut national de la recherche scientifique—Centre Énergie Matériaux TélécommunicationsInstitut national de la recherche scientifique—Centre Énergie Matériaux TélécommunicationsInstitut national de la recherche scientifique—Centre Énergie Matériaux TélécommunicationsInstitut national de la recherche scientifique—Centre Énergie Matériaux TélécommunicationsInstitut national de la recherche scientifique—Centre Énergie Matériaux TélécommunicationsInstitut national de la recherche scientifique—Centre Énergie Matériaux TélécommunicationsInstitut national de la recherche scientifique—Centre Énergie Matériaux TélécommunicationsXlim Research Institute, CNRS UMR 7252, University of LimogesFriedrich Schiller University Jena, Abbe Center of Photonics, Institute of Applied PhysicsFriedrich Schiller University Jena, Abbe Center of Photonics, Institute of Applied PhysicsQXP Technology Inc.Department of Physics, City University of Hong KongFriedrich Schiller University Jena, Abbe Center of Photonics, Institute of Applied PhysicsShimmer Center, Tianfu Jiangxi LaboratoryInstitut national de la recherche scientifique—Centre Énergie Matériaux TélécommunicationsOkinawa Institute of Science and Technology Graduate UniversityOptical Sciences Centre, Swinburne University of TechnologyInstitut national de la recherche scientifique—Centre Énergie Matériaux TélécommunicationsAbstract High-dimensional photon states (qudits) are pivotal to enhance the information capacity, noise robustness, and data rates of quantum communications. Time-bin entangled qudits are promising candidates for implementing high-dimensional quantum communications over optical fiber networks with processing rates approaching those of classical telecommunications. However, their use is hindered by phase instability, timing inaccuracy, and low scalability of interferometric schemes needed for time-bin processing. As well, increasing the number of time bins per photon state typically requires decreasing the repetition rate of the system, affecting in turn the effective qudit rates. Here, we demonstrate a fiber-pigtailed, integrated photonic platform enabling the generation and processing of picosecond-spaced time-bin entangled qudits in the telecommunication C band via an on-chip interferometry system. We experimentally demonstrate the Bennett-Brassard-Mermin 1992 quantum key distribution protocol with time-bin entangled qudits and extend it over a 60 km-long optical fiber link, by showing dimensionality scaling without sacrificing the repetition rate. Our approach enables the manipulation of time-bin entangled qudits at processing speeds typical of standard telecommunications (10 s of GHz) with high quantum information capacity per single frequency channel, representing an important step towards an efficient implementation of high-data rate quantum communications in standard, multi-user optical fiber networks.https://doi.org/10.1038/s41467-024-55345-0 |
spellingShingle | Hao Yu Stefania Sciara Mario Chemnitz Nicola Montaut Benjamin Crockett Bennet Fischer Robin Helsten Benjamin Wetzel Thorsten A. Goebel Ria G. Krämer Brent E. Little Sai T. Chu Stefan Nolte Zhiming Wang José Azaña William J. Munro David J. Moss Roberto Morandotti Quantum key distribution implemented with d-level time-bin entangled photons Nature Communications |
title | Quantum key distribution implemented with d-level time-bin entangled photons |
title_full | Quantum key distribution implemented with d-level time-bin entangled photons |
title_fullStr | Quantum key distribution implemented with d-level time-bin entangled photons |
title_full_unstemmed | Quantum key distribution implemented with d-level time-bin entangled photons |
title_short | Quantum key distribution implemented with d-level time-bin entangled photons |
title_sort | quantum key distribution implemented with d level time bin entangled photons |
url | https://doi.org/10.1038/s41467-024-55345-0 |
work_keys_str_mv | AT haoyu quantumkeydistributionimplementedwithdleveltimebinentangledphotons AT stefaniasciara quantumkeydistributionimplementedwithdleveltimebinentangledphotons AT mariochemnitz quantumkeydistributionimplementedwithdleveltimebinentangledphotons AT nicolamontaut quantumkeydistributionimplementedwithdleveltimebinentangledphotons AT benjamincrockett quantumkeydistributionimplementedwithdleveltimebinentangledphotons AT bennetfischer quantumkeydistributionimplementedwithdleveltimebinentangledphotons AT robinhelsten quantumkeydistributionimplementedwithdleveltimebinentangledphotons AT benjaminwetzel quantumkeydistributionimplementedwithdleveltimebinentangledphotons AT thorstenagoebel quantumkeydistributionimplementedwithdleveltimebinentangledphotons AT riagkramer quantumkeydistributionimplementedwithdleveltimebinentangledphotons AT brentelittle quantumkeydistributionimplementedwithdleveltimebinentangledphotons AT saitchu quantumkeydistributionimplementedwithdleveltimebinentangledphotons AT stefannolte quantumkeydistributionimplementedwithdleveltimebinentangledphotons AT zhimingwang quantumkeydistributionimplementedwithdleveltimebinentangledphotons AT joseazana quantumkeydistributionimplementedwithdleveltimebinentangledphotons AT williamjmunro quantumkeydistributionimplementedwithdleveltimebinentangledphotons AT davidjmoss quantumkeydistributionimplementedwithdleveltimebinentangledphotons AT robertomorandotti quantumkeydistributionimplementedwithdleveltimebinentangledphotons |