Quantum key distribution implemented with d-level time-bin entangled photons

Abstract High-dimensional photon states (qudits) are pivotal to enhance the information capacity, noise robustness, and data rates of quantum communications. Time-bin entangled qudits are promising candidates for implementing high-dimensional quantum communications over optical fiber networks with p...

Full description

Saved in:
Bibliographic Details
Main Authors: Hao Yu, Stefania Sciara, Mario Chemnitz, Nicola Montaut, Benjamin Crockett, Bennet Fischer, Robin Helsten, Benjamin Wetzel, Thorsten A. Goebel, Ria G. Krämer, Brent E. Little, Sai T. Chu, Stefan Nolte, Zhiming Wang, José Azaña, William J. Munro, David J. Moss, Roberto Morandotti
Format: Article
Language:English
Published: Nature Portfolio 2025-01-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-024-55345-0
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841559197274079232
author Hao Yu
Stefania Sciara
Mario Chemnitz
Nicola Montaut
Benjamin Crockett
Bennet Fischer
Robin Helsten
Benjamin Wetzel
Thorsten A. Goebel
Ria G. Krämer
Brent E. Little
Sai T. Chu
Stefan Nolte
Zhiming Wang
José Azaña
William J. Munro
David J. Moss
Roberto Morandotti
author_facet Hao Yu
Stefania Sciara
Mario Chemnitz
Nicola Montaut
Benjamin Crockett
Bennet Fischer
Robin Helsten
Benjamin Wetzel
Thorsten A. Goebel
Ria G. Krämer
Brent E. Little
Sai T. Chu
Stefan Nolte
Zhiming Wang
José Azaña
William J. Munro
David J. Moss
Roberto Morandotti
author_sort Hao Yu
collection DOAJ
description Abstract High-dimensional photon states (qudits) are pivotal to enhance the information capacity, noise robustness, and data rates of quantum communications. Time-bin entangled qudits are promising candidates for implementing high-dimensional quantum communications over optical fiber networks with processing rates approaching those of classical telecommunications. However, their use is hindered by phase instability, timing inaccuracy, and low scalability of interferometric schemes needed for time-bin processing. As well, increasing the number of time bins per photon state typically requires decreasing the repetition rate of the system, affecting in turn the effective qudit rates. Here, we demonstrate a fiber-pigtailed, integrated photonic platform enabling the generation and processing of picosecond-spaced time-bin entangled qudits in the telecommunication C band via an on-chip interferometry system. We experimentally demonstrate the Bennett-Brassard-Mermin 1992 quantum key distribution protocol with time-bin entangled qudits and extend it over a 60 km-long optical fiber link, by showing dimensionality scaling without sacrificing the repetition rate. Our approach enables the manipulation of time-bin entangled qudits at processing speeds typical of standard telecommunications (10 s of GHz) with high quantum information capacity per single frequency channel, representing an important step towards an efficient implementation of high-data rate quantum communications in standard, multi-user optical fiber networks.
format Article
id doaj-art-26b3ed88092f41aeb635907a5c363d90
institution Kabale University
issn 2041-1723
language English
publishDate 2025-01-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj-art-26b3ed88092f41aeb635907a5c363d902025-01-05T12:39:09ZengNature PortfolioNature Communications2041-17232025-01-0116111010.1038/s41467-024-55345-0Quantum key distribution implemented with d-level time-bin entangled photonsHao Yu0Stefania Sciara1Mario Chemnitz2Nicola Montaut3Benjamin Crockett4Bennet Fischer5Robin Helsten6Benjamin Wetzel7Thorsten A. Goebel8Ria G. Krämer9Brent E. Little10Sai T. Chu11Stefan Nolte12Zhiming Wang13José Azaña14William J. Munro15David J. Moss16Roberto Morandotti17Institut national de la recherche scientifique—Centre Énergie Matériaux TélécommunicationsInstitut national de la recherche scientifique—Centre Énergie Matériaux TélécommunicationsInstitut national de la recherche scientifique—Centre Énergie Matériaux TélécommunicationsInstitut national de la recherche scientifique—Centre Énergie Matériaux TélécommunicationsInstitut national de la recherche scientifique—Centre Énergie Matériaux TélécommunicationsInstitut national de la recherche scientifique—Centre Énergie Matériaux TélécommunicationsInstitut national de la recherche scientifique—Centre Énergie Matériaux TélécommunicationsXlim Research Institute, CNRS UMR 7252, University of LimogesFriedrich Schiller University Jena, Abbe Center of Photonics, Institute of Applied PhysicsFriedrich Schiller University Jena, Abbe Center of Photonics, Institute of Applied PhysicsQXP Technology Inc.Department of Physics, City University of Hong KongFriedrich Schiller University Jena, Abbe Center of Photonics, Institute of Applied PhysicsShimmer Center, Tianfu Jiangxi LaboratoryInstitut national de la recherche scientifique—Centre Énergie Matériaux TélécommunicationsOkinawa Institute of Science and Technology Graduate UniversityOptical Sciences Centre, Swinburne University of TechnologyInstitut national de la recherche scientifique—Centre Énergie Matériaux TélécommunicationsAbstract High-dimensional photon states (qudits) are pivotal to enhance the information capacity, noise robustness, and data rates of quantum communications. Time-bin entangled qudits are promising candidates for implementing high-dimensional quantum communications over optical fiber networks with processing rates approaching those of classical telecommunications. However, their use is hindered by phase instability, timing inaccuracy, and low scalability of interferometric schemes needed for time-bin processing. As well, increasing the number of time bins per photon state typically requires decreasing the repetition rate of the system, affecting in turn the effective qudit rates. Here, we demonstrate a fiber-pigtailed, integrated photonic platform enabling the generation and processing of picosecond-spaced time-bin entangled qudits in the telecommunication C band via an on-chip interferometry system. We experimentally demonstrate the Bennett-Brassard-Mermin 1992 quantum key distribution protocol with time-bin entangled qudits and extend it over a 60 km-long optical fiber link, by showing dimensionality scaling without sacrificing the repetition rate. Our approach enables the manipulation of time-bin entangled qudits at processing speeds typical of standard telecommunications (10 s of GHz) with high quantum information capacity per single frequency channel, representing an important step towards an efficient implementation of high-data rate quantum communications in standard, multi-user optical fiber networks.https://doi.org/10.1038/s41467-024-55345-0
spellingShingle Hao Yu
Stefania Sciara
Mario Chemnitz
Nicola Montaut
Benjamin Crockett
Bennet Fischer
Robin Helsten
Benjamin Wetzel
Thorsten A. Goebel
Ria G. Krämer
Brent E. Little
Sai T. Chu
Stefan Nolte
Zhiming Wang
José Azaña
William J. Munro
David J. Moss
Roberto Morandotti
Quantum key distribution implemented with d-level time-bin entangled photons
Nature Communications
title Quantum key distribution implemented with d-level time-bin entangled photons
title_full Quantum key distribution implemented with d-level time-bin entangled photons
title_fullStr Quantum key distribution implemented with d-level time-bin entangled photons
title_full_unstemmed Quantum key distribution implemented with d-level time-bin entangled photons
title_short Quantum key distribution implemented with d-level time-bin entangled photons
title_sort quantum key distribution implemented with d level time bin entangled photons
url https://doi.org/10.1038/s41467-024-55345-0
work_keys_str_mv AT haoyu quantumkeydistributionimplementedwithdleveltimebinentangledphotons
AT stefaniasciara quantumkeydistributionimplementedwithdleveltimebinentangledphotons
AT mariochemnitz quantumkeydistributionimplementedwithdleveltimebinentangledphotons
AT nicolamontaut quantumkeydistributionimplementedwithdleveltimebinentangledphotons
AT benjamincrockett quantumkeydistributionimplementedwithdleveltimebinentangledphotons
AT bennetfischer quantumkeydistributionimplementedwithdleveltimebinentangledphotons
AT robinhelsten quantumkeydistributionimplementedwithdleveltimebinentangledphotons
AT benjaminwetzel quantumkeydistributionimplementedwithdleveltimebinentangledphotons
AT thorstenagoebel quantumkeydistributionimplementedwithdleveltimebinentangledphotons
AT riagkramer quantumkeydistributionimplementedwithdleveltimebinentangledphotons
AT brentelittle quantumkeydistributionimplementedwithdleveltimebinentangledphotons
AT saitchu quantumkeydistributionimplementedwithdleveltimebinentangledphotons
AT stefannolte quantumkeydistributionimplementedwithdleveltimebinentangledphotons
AT zhimingwang quantumkeydistributionimplementedwithdleveltimebinentangledphotons
AT joseazana quantumkeydistributionimplementedwithdleveltimebinentangledphotons
AT williamjmunro quantumkeydistributionimplementedwithdleveltimebinentangledphotons
AT davidjmoss quantumkeydistributionimplementedwithdleveltimebinentangledphotons
AT robertomorandotti quantumkeydistributionimplementedwithdleveltimebinentangledphotons