A remark on the metric dimension in Riemannian manifolds of constant curvature

We compute the metric dimension of Riemannian manifolds of constant curvature. We define the edge weghited metric dimension of the geodesic graphs in Riemannian manifolds and we show that each complete geodesic graph $G=(V,E)$ embedded in a Riemannian manifold of constant curvature resolves a totall...

Full description

Saved in:
Bibliographic Details
Main Authors: Shiva Heidarkhani Gilani, Reza Mirzaie, Ebrahim Vatandoost
Format: Article
Language:English
Published: Amirkabir University of Technology 2025-02-01
Series:AUT Journal of Mathematics and Computing
Subjects:
Online Access:https://ajmc.aut.ac.ir/article_5326_701c1c6aa05ef2d0eabf0555883c95ae.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1823858248815476736
author Shiva Heidarkhani Gilani
Reza Mirzaie
Ebrahim Vatandoost
author_facet Shiva Heidarkhani Gilani
Reza Mirzaie
Ebrahim Vatandoost
author_sort Shiva Heidarkhani Gilani
collection DOAJ
description We compute the metric dimension of Riemannian manifolds of constant curvature. We define the edge weghited metric dimension of the geodesic graphs in Riemannian manifolds and we show that each complete geodesic graph $G=(V,E)$ embedded in a Riemannian manifold of constant curvature resolves a totally geodesic submanifold of dimension $|V|-1$.
format Article
id doaj-art-2661298d7c6b485c8a5dae19478b98f0
institution Kabale University
issn 2783-2449
2783-2287
language English
publishDate 2025-02-01
publisher Amirkabir University of Technology
record_format Article
series AUT Journal of Mathematics and Computing
spelling doaj-art-2661298d7c6b485c8a5dae19478b98f02025-02-11T12:37:04ZengAmirkabir University of TechnologyAUT Journal of Mathematics and Computing2783-24492783-22872025-02-016217117610.22060/ajmc.2023.22527.11655326A remark on the metric dimension in Riemannian manifolds of constant curvatureShiva Heidarkhani Gilani0Reza Mirzaie1Ebrahim Vatandoost2Department of Pure Mathematics, Faculty of Science, Imam Khomeini International University, Qazvin, IranDepartment of Pure Mathematics, Faculty of Science, Imam Khomeini International University, Qazvin, IranDepartment of Pure Mathematics, Faculty of Science, Imam Khomeini International University, Qazvin, IranWe compute the metric dimension of Riemannian manifolds of constant curvature. We define the edge weghited metric dimension of the geodesic graphs in Riemannian manifolds and we show that each complete geodesic graph $G=(V,E)$ embedded in a Riemannian manifold of constant curvature resolves a totally geodesic submanifold of dimension $|V|-1$.https://ajmc.aut.ac.ir/article_5326_701c1c6aa05ef2d0eabf0555883c95ae.pdfmetric dimensionriemannian manifoldgraph
spellingShingle Shiva Heidarkhani Gilani
Reza Mirzaie
Ebrahim Vatandoost
A remark on the metric dimension in Riemannian manifolds of constant curvature
AUT Journal of Mathematics and Computing
metric dimension
riemannian manifold
graph
title A remark on the metric dimension in Riemannian manifolds of constant curvature
title_full A remark on the metric dimension in Riemannian manifolds of constant curvature
title_fullStr A remark on the metric dimension in Riemannian manifolds of constant curvature
title_full_unstemmed A remark on the metric dimension in Riemannian manifolds of constant curvature
title_short A remark on the metric dimension in Riemannian manifolds of constant curvature
title_sort remark on the metric dimension in riemannian manifolds of constant curvature
topic metric dimension
riemannian manifold
graph
url https://ajmc.aut.ac.ir/article_5326_701c1c6aa05ef2d0eabf0555883c95ae.pdf
work_keys_str_mv AT shivaheidarkhanigilani aremarkonthemetricdimensioninriemannianmanifoldsofconstantcurvature
AT rezamirzaie aremarkonthemetricdimensioninriemannianmanifoldsofconstantcurvature
AT ebrahimvatandoost aremarkonthemetricdimensioninriemannianmanifoldsofconstantcurvature
AT shivaheidarkhanigilani remarkonthemetricdimensioninriemannianmanifoldsofconstantcurvature
AT rezamirzaie remarkonthemetricdimensioninriemannianmanifoldsofconstantcurvature
AT ebrahimvatandoost remarkonthemetricdimensioninriemannianmanifoldsofconstantcurvature