Advancing proton-conducting ceramic electrochemical devices: perspectives on benchmarking and barriers to progress

Proton-conducting ceramic electrochemical devices (PCCs) show promise for sustainable energy conversion, yet key challenges remain. This perspective highlights critical areas for advancing PCC research. The field requires standardized protocols for fabrication, testing, and results reporting. Improv...

Full description

Saved in:
Bibliographic Details
Main Authors: Charlie Meisel, You-Dong Kim, David Diercks, Ryan O’Hayre, Neal P. Sullivan
Format: Article
Language:English
Published: Frontiers Media S.A. 2025-06-01
Series:Frontiers in Energy Research
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fenrg.2025.1565315/full
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Proton-conducting ceramic electrochemical devices (PCCs) show promise for sustainable energy conversion, yet key challenges remain. This perspective highlights critical areas for advancing PCC research. The field requires standardized protocols for fabrication, testing, and results reporting. Improved electrolyte sintering techniques and minimized nickel-induced defects are imperative for stable, high-performing cells. Addressing materials criticality is essential for commercialization. A deeper understanding of electrolyte grain boundary properties, positrode-electrolyte interface characteristics, and distribution of relaxation times analysis has great potential to accelerate progress. The promising application of PCCs in electrolysis mode remains understudied and merits increased research attention.
ISSN:2296-598X