Investigation of Power-Law Fluid Infiltration Grout Characteristics on the Basis of Fractal Theory

This study advances the theory of power-law fluid infiltration grouting by developing spherical and columnar diffusion models rooted in fractal porous media theory and power-law rheological equations. An analytical solution for determining the slurry diffusion radius is derived and validated through...

Full description

Saved in:
Bibliographic Details
Main Authors: Fucheng Wei, Jinxing Lai, Xulin Su
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Buildings
Subjects:
Online Access:https://www.mdpi.com/2075-5309/15/6/987
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study advances the theory of power-law fluid infiltration grouting by developing spherical and columnar diffusion models rooted in fractal porous media theory and power-law rheological equations. An analytical solution for determining the slurry diffusion radius is derived and validated through laboratory experiments and numerical simulations. Key findings include the following: (1) The fractal permeability constant demonstrates an exponential dependence on the rheological index (<i>n</i>), with a critical threshold at <i>n</i> = 0.4. Below this threshold, the constant asymptotically approaches zero (slope < 0.1), while beyond it, sensitivity intensifies exponentially, attaining 0.48 at <i>n</i> = 0.9. (2) Non-linear positive correlations exist between the slurry diffusion radius and both the grouting pressure (P) and the water–cement ratio (W/C). Spherical diffusion dominates over columnar diffusion, with their ratio shifting from 1:0.96 at P = 0.1 MPa to 1:0.82 at P = 0.5 MPa. The diffusion distance differential increases from 22 mm to 38 mm as the W/C rises from 0.5 to 0.7, attributable to reduced interfacial shear resistance from decreasing slurry viscosity and yield stress. (3) Experimental validation confirms exponentially decaying model errors: spherical grouting errors decrease from 21.54% (t = 5 s) to 8.43% (t = 15 s) and columnar errors from 25.45% to 10.17%, both within the 50% engineering tolerance. (4) Numerical simulations show that the meander fractal dimension (48 mm) demonstrates a higher sensitivity than the volume fractal dimension (37 mm), with both dimensions reaching maximum values. These findings establish a theoretical framework for optimizing grouting design in heterogeneous porous media.
ISSN:2075-5309